• 1.52 MB
  • 2021-06-25 发布

2018-2019学年广东省深圳市高一下学期期末考试数学试题(解析版)

  • 18页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2018-2019学年广东省深圳市高一下学期期末考试数学试题 一、单选题 ‎1.若集合,,则(   )‎ A. B. C. D.‎ ‎【答案】B ‎【解析】通过集合B中,用列举法表示出集合B,再利用交集的定义求出.‎ ‎【详解】‎ 由题意,集合, 所以 故答案为:B ‎【点睛】‎ 本题主要考查了集合的表示方法,以及集合的运算,其中熟记集合的表示方法,以及准确利用集合的运算是解答的关键,着重考查了推理与运算能力,属于基础题.‎ ‎2.连续两次抛掷一枚质地均匀的硬币,出现正面向上与反面向上各一次的概率是(  )‎ A. B. C. D.‎ ‎【答案】C ‎【解析】利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解.‎ ‎【详解】‎ 由题意,连续两次抛掷一枚质地均匀的硬币,基本事件包含:(正面,正面),(正面,反面),(反面,正面),(反面,反面),共有4中情况,‎ 出现正面向上与反面向上各一次,包含基本事件:(正面,反面),(反面,正面),共2种,‎ 所以的概率为,故选C.‎ ‎【点睛】‎ 本题主要考查了古典概型及其概率的计算问题,其中解答中熟练利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.‎ ‎3.下列函数中,既是偶函数又在区间上单调递减的是(   )‎ A. B. C. D.‎ ‎【答案】D ‎【解析】利用函数的奇偶性和单调性,逐一判断各个选项中的函数的奇偶性和单调性,进而得出结论.‎ ‎【详解】‎ 由于函数是奇函数,不是偶函数,故排除A;‎ 由于函数是偶函数,但它在区间上单调递增,故排除B;‎ 由于函数是奇函数,不是偶函数,故排除C;‎ 由于函数是偶函数,且满足在区间上单调递减,故满足条件.‎ 故答案为:D ‎【点睛】‎ 本题主要考查了函数的奇偶性的判定及应用,其中解答中熟记函数的奇偶性的定义和判定方法,以及基本初等函数的奇偶性是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.‎ ‎4.如图,扇形的圆心角为,半径为1,则该扇形绕所在直线旋转一周得到的几何体的表面积为(  )‎ A. B. C. D.‎ ‎【答案】C ‎【解析】以所在直线为旋转轴将整个图形旋转一周所得几何体是一个半球,利用球面的表面积公式及圆的表面积公式即可求得.‎ ‎【详解】‎ 由已知可得:以所在直线为旋转轴将整个图形旋转一周所得几何体是一个半球,其中半球的半径为1,故半球的表面积为:‎ 故答案为:C ‎【点睛】‎ 本题主要考查了旋转体的概念,以及球的表面积的计算,其中解答中熟记旋转体的定义,以及球的表面积公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.‎ ‎5.已知函数,下列结论不正确的是(   )‎ A.函数的最小正周期为 B.函数在区间内单调递减 C.函数的图象关于轴对称 D.把函数的图象向左平移个单位长度可得到的图象 ‎【答案】D ‎【解析】利用余弦函数的性质对A、B、C三个选项逐一判断,再利用平移“左加右减”及诱导公式得出,进而得出答案.‎ ‎【详解】‎ 由题意,函数其最小正周期为,故选项A正确;‎ 函数在上为减函数,故选项B正确;‎ 函数为偶函数,关于轴对称,故选项C正确 把函数的图象向左平移个单位长度可得,所以选项D不正确.‎ 故答案为:D ‎【点睛】‎ 本题主要考查了余弦函数的性质,以及诱导公式的应用,着重考查了推理与运算能力,属于基础题.‎ ‎6.已知直线是平面的斜线,则内不存在与(   )‎ A.相交的直线 B.平行的直线 C.异面的直线 D.垂直的直线 ‎【答案】B ‎【解析】根据平面的斜线的定义,即可作出判定,得到答案.‎ ‎【详解】‎ 由题意,直线是平面的斜线,由斜线的定义可知与平面相交但不垂直的直线叫做平面的斜线,所以在平面内肯定不存在与直线平行的直线.‎ 故答案为:B ‎【点睛】‎ 本题主要考查了直线与平面的位置关系的判定及应用,其中解答中熟记平面斜线的定义是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.‎ ‎7.若,且,则“”是“函数有零点”的(   )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 ‎【答案】A ‎【解析】结合函数零点的定义,利用充分条件和必要条件的定义进行判断,即可得出答案.‎ ‎【详解】‎ 由题意,当时,,函数与有交点,‎ 故函数有零点;‎ 当有零点时,不一定取, 只要满足都符合题意.‎ 所以“”是“函数有零点”的充分不必要条件.‎ 故答案为:A ‎【点睛】‎ 本题主要考查了函数零点的概念,以及对数函数的图象与性质的应用,其中解答中熟记函数零点的定义,以及对数函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.‎ ‎8.如图,中,分别是边的中点,与相交于点,则(   ) ‎ A. B.‎ C. D.‎ ‎【答案】C ‎【解析】利用向量的加减法的法则,利用是的重心,进而得出, 再利用向量的加减法的法则,即可得出答案.‎ ‎【详解】‎ 由题意,点分别是边的中点,与相交于点,‎ 所以是的重心,则,‎ ‎ 又因为,‎ 所以 故答案为:C ‎【点睛】‎ 本题主要考查了向量的线性运算,以及三角形重心的性质,其中解答中熟记三角形重心的性质,以及向量的线性运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.‎ ‎9.英国数学家布鲁克泰勒(Taylor Brook,1685~1731)建立了如下正、余弦公式(   )‎ 其中,,例如:。试用上述公式估计的近似值为(精确到0.01)‎ A.0.99 B.0.98 C.0.97  D.0.96‎ ‎【答案】B ‎【解析】利用题设中给出的公式进行化简,即可估算,得到答案.‎ ‎【详解】‎ 由题设中的余弦公式得 ‎,‎ 故答案为:B ‎【点睛】‎ 本题主要考查了新信息试题的应用,其中解答中理解题意,利用题设中的公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.‎ ‎10.已知函数,若存在实数,满足,则实数的取值范围为(   )‎ A. B.‎ C. D.‎ ‎【答案】A ‎【解析】根据题意可知方程有解即可,代入解析式化简后,利用基本不等式得出, 再利用分类讨论思想即可求出实数的取值范围.‎ ‎【详解】‎ 由题意知,方程有解,‎ 则,‎ 化简得,即,‎ 因为,所以,‎ 当时,化简得, 解得;‎ 当时,化简得, 解得,‎ 综上所述的取值范围为.‎ 故答案为:A ‎【点睛】‎ 本题主要考查了函数的基本性质的应用,以及利用基本不等式求最值的应用,其中解答中利用题设条件化简,合理利用基本不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.‎ 二、填空题 ‎11.设为虚数单位,复数的模为______。‎ ‎【答案】5‎ ‎【解析】利用复数代数形式的乘法运算化简,然后代入复数模的公式,即可求得答案.‎ ‎【详解】‎ 由题意,复数,则复数的模为.‎ 故答案为:5‎ ‎【点睛】‎ 本题主要考查了复数的乘法运算,以及复数模的计算,其中熟记复数的运算法则,和复数模的公式是解答的关键,着重考查了推理与运算能力,属于基础题.‎ ‎12.已知,则________.‎ ‎【答案】‎ ‎【解析】利用向量内积的坐标运算以及向量模的坐标表示,准确运算,即可求解.‎ ‎【详解】‎ 由题意,向量,‎ 则,,‎ 所以.‎ 故答案为:‎ ‎【点睛】‎ 本题主要考查了向量内积的坐标运算,以及向量模的坐标运算的应用,其中解答中熟记向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.‎ ‎13.甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.7,现两人各自独立射击一次,均中靶的概率为 ______.‎ ‎【答案】0.56‎ ‎【解析】根据在一次射击中,甲、乙同时射中目标是相互独立的,利用相互独立事件的概率乘法公式,即可求解.‎ ‎【详解】‎ 由题意,甲的中靶概率为0.8,乙的中靶概率为0.7,‎ 所以两人均中靶的概率为,‎ 故答案为:0.56‎ ‎【点睛】‎ 本题主要考查了相互独立事件的概率乘法公式的应用,其中解答中合理利用相互独立的概率乘法公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.‎ ‎14.某学校高一年级举行选课培训活动,共有1024名学生、家长、老师参加,其中家长256人.学校按学生、家长、老师分层抽样,从中抽取64人,进行某问卷调查,则抽到的家长有___人 ‎【答案】16‎ ‎【解析】利用分层抽样的性质,直接计算,即可求得,得到答案.‎ ‎【详解】‎ 由题意,可知共有1024名学生、家长、老师参加,其中家长256人,‎ 通过分层抽样从中抽取64人,进行某问卷调查,则抽到的家长人数为人.‎ 故答案为:16‎ ‎【点睛】‎ 本题主要考查了分层抽样的应用,其中解答中熟记分层抽样的概念和性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.‎ ‎15.函数的部分图象如图,其中,,.则 ____; _____.‎ ‎【答案】2 ‎ ‎【解析】由图求得, 再由求出,利用图象过点,求出, 进而求出,即可求解,得到答案.‎ ‎【详解】‎ 由题意,根据三角函数的部分图象,可得 即,因为,所以,‎ 又由图可知,‎ 根据,解得,‎ 因为,所以,所以.‎ 故答案为:2 ;‎ ‎【点睛】‎ 本题主要考查了由的部分图象确定其解析式,其中解答中熟记三角函数的图象与性质,合理计算是解答的关键,着重考查了推理与运算能力,属于基础题.‎ ‎16.棱长均为1m的正三棱柱透明封闭容器盛有水,当侧面水平放置时,液面高为 (如图1); 当转动容器至截面水平放置时,盛水恰好充满三棱锥(如图2),则___; _____.‎ ‎【答案】 ‎ ‎【解析】利用体积相等得出,进而算出,进而得出,通过面积的比值,进而求出的值,得到答案.‎ ‎【详解】‎ 由题意,正三棱柱的棱长均为,‎ 所以,‎ 由题意可得,‎ 又由得,‎ ‎∴,∴‎ ‎∵,∴,∴‎ 在等边中,边上的高为 因为,∴‎ 故答案为:.‎ ‎【点睛】‎ 本题主要考查了空间几何体的体积公式的应用,其中解答中熟记空间几何体的结构特征,合理利用椎体的体积公式和三棱锥的结构特征求解是解答的关键,着重考查了空间想象能,以及推理与运算能力,属于中档试题.‎ 三、解答题 ‎17.已知的三个内角的对边分别是,且. ‎ ‎(1)求角的大小;‎ ‎(2)若的面积为,求的周长.‎ ‎【答案】(1) ; (2) ‎ ‎【解析】(1)通过正弦定理得,进而求出, 再根据,进而求得的大小;‎ ‎(2)由正弦定理中的三角形面积公式求出, 再根据余弦定理,求得, 进而求得的周长.‎ ‎【详解】‎ ‎(1)由题意知,由正弦定理得,‎ 又由,则,所以,‎ 又因为,则,所以.‎ ‎(2)由三角形的面积公式,可得,解得,‎ 又因为,‎ 解得,即,所以,‎ 所以的周长为 ‎【点睛】‎ 本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.‎ ‎18.如图,在平面直角坐标系中,点为单位圆与轴正半轴的交点,点为单位圆上的一点,且,点沿单位圆按逆时针方向旋转角后到点 ‎(1)当时,求的值;‎ ‎(2)设,求的取值范围.‎ ‎【答案】(1) ;(2) ‎ ‎【解析】(1)由三角函数的定义得出, 通过当时,,, 进而求出的值;‎ ‎(2)利用三角恒等变换的公式化简得,得出,进而得到的取值范围.‎ ‎【详解】‎ ‎(1)由三角函数的定义,可得 当时,,即,‎ 所以.‎ ‎(2)因为,所以,‎ 由三角恒等变换的公式,化简可得:‎ ‎,‎ 因为,所以,‎ 即的取值范围为.‎ ‎【点睛】‎ 本题主要考查了任意角的三角函数的定义,两角和与差的正、余弦函数的公式的应用,以及正弦函数的性质的应用,其中解答中熟记三角函数的定义与性质,以及两角和与差的三角函数的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.‎ ‎19.某科研课题组通过一款手机APP软件,调查了某市1000名跑步爱好者平均每周的跑步量(简称“周跑量”),得到如下的频数分布表 周跑量(km/周)‎ 人数 ‎100‎ ‎120‎ ‎130‎ ‎180‎ ‎220‎ ‎150‎ ‎60‎ ‎30‎ ‎10‎ ‎(1)在答题卡上补全该市1000名跑步爱好者周跑量的频率分布直方图:‎ 注:请先用铅笔画,确定后再用黑色水笔描黑 ‎(2)根据以上图表数据计算得样本的平均数为,试求样本的中位数(保留一位小数),并用平均数、中位数等数字特征估计该市跑步爱好者周跑量的分布特点 ‎(3)根据跑步爱好者的周跑量,将跑步爱好者分成以下三类,不同类别的跑者购买的装备的价格不一样,如下表: ‎ 周跑量 小于20公里 ‎20公里到40公里 不小于40公里 类别 休闲跑者 核心跑者 精英跑者 装备价格(单位:元)‎ ‎2500‎ ‎4000‎ ‎4500‎ 根据以上数据,估计该市每位跑步爱好者购买装备,平均需要花费多少元?‎ ‎【答案】(1)见解析;(2) 中位数为29.2,分布特点见解析; (3)3720元 ‎【解析】(1)根据频数和频率之间的关系计算,即可得到答案;‎ ‎(2)根据频率分布直方图利用中位数两边频率相等,列方程求出中位数的值,进而得出结论;‎ ‎(3)根据频率分布直方图求出休闲跑者,核心跑者,精英跑者分别人数,进而求出平均值.‎ ‎【详解】‎ ‎(1)补全该市1000名跑步爱好者周跑量的频率分布直方图,如下:‎ ‎(2)中位数的估计值:‎ 由,‎ 所以中位数位于区间中,‎ 设中位数为,则,‎ 解得,因为,‎ 所以估计该市跑步爱好者多数人的周跑量多于样本的平均数.‎ ‎(3)依题意可知,休闲跑者共有人,‎ 核心跑者人,‎ 精英跑者人,‎ 所以该市每位跑步爱好者购买装备,平均需要元.‎ ‎【点睛】‎ 本题主要考查了平均数、中位数的求法,以及频率分布直方图的性质等相应知识的综合应用,着重考查了化简能力,推理计算能力,以及数形结合思想的应用,属于基础题.‎ ‎20.如图长方体中,,分别为棱,的中点 ‎(1)求证:平面平面;‎ ‎(2)请在答题卡图形中画出直线与平面的交点(保留必要的辅助线),写出画法并计算的值(不必写出计算过程).‎ ‎【答案】(1)见证明;(2) ;画图见解析 ‎【解析】(1)推导出平面,得出,得出,从而得到,进而证出平面,由此证得平面平面.‎ ‎(2)设,在平面内过点作的平行线,交于点,可得的值.‎ ‎【详解】‎ ‎(1)证明:在长方体中,,‎ 分别为棱,的中点,所以平面,则,‎ 在中,,‎ 在中,,‎ 所以,‎ 因为在中,,所以,所以,‎ 又因为,所以平面,‎ 因为平面,所以平面平面 ‎(2)设,在平面内过点作的平行线,连接交于点,‎ 则即为直线和平面的交点,所以.‎ ‎【点睛】‎ 本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.‎ ‎21.已知函数,其中.‎ ‎(1)当时,求的最小值;‎ ‎(2)设函数恰有两个零点,且,求的取值范围.‎ ‎【答案】(1) ; (2) ‎ ‎【解析】(1)当时,利用指数函数和二次函数的图象与性质,得到函数的单调性,即可求得函数的最小值;‎ ‎(2)利用零点定理结合一元二次不等式根与系数的关系即可求出的范围.‎ ‎【详解】‎ ‎(1)当时,函数,‎ 当时,,由指数函数的性质,可得函数在上为增函数,且;‎ 当时,,由二次函数的性质,可得函数在上为减函数,在上为增函数,‎ 又由函数, 当时,函数值取最小值为;‎ 故当时,最小值为.‎ ‎(2)因为函数恰有两个零点,‎ ‎(ⅰ)当时,函数有一个零点,令得,‎ 因为,所以,‎ 此时函数也恰有一个零点,,解得(舍去).‎ ‎(ⅱ)函数恰有两个零点 ,,‎ 解得或,‎ 又由,‎ 因为,所以,即,‎ 即,解得;‎ 当时,结合上述无解;‎ 当时,结合上述可得;‎ 所以实数的取值范围为.‎ ‎【点睛】‎ 本题主要考查了指数函数与二次函数的图象与性质的应用,以及函数与方程的综合应用,其中解答中熟记基本初等函数的性质,以及函数零点的性质,合理应用是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.‎

相关文档