• 134.73 KB
  • 2022-04-12 发布

2020版高考物理第五章第30课时功能关系能量守恒定律(重点突破课)讲义

  • 8页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第30课时 功能关系 能量守恒定律(重点突破课)[考点一 功能关系的理解和应用]功能关系是历年高考的考查热点。考查的题型既有选择题又有计算题。学生在解答这类问题时,常因为没有正确分析出哪些力做功或者哪些能量发生变化而出错。1.功能关系(1)功是能量转化的量度,即做了多少功就有多少能量发生了转化。(2)做功的过程一定伴随着能量的转化,能量的转化可以通过做功来实现。2.几种常见的功能关系几种常见力做功对应的能量变化数量关系式重力正功重力势能减少WG=-ΔEp负功重力势能增加弹簧等的弹力正功弹性势能减少W弹=-ΔEp负功弹性势能增加电场力正功电势能减少W电=-ΔEp负功电势能增加合力正功动能增加W合=ΔEk负功动能减少除重力和弹力以外的其他力正功机械能增加W其=ΔE负功机械能减少3.两个特殊的功能关系(1)滑动摩擦力与两物体间相对位移的乘积等于产生的内能,即Ffl相对=ΔQ。(2)感应电流克服安培力做的功等于产生的电能,即W克安=ΔE电。[典例] (多选)(2019·佛山模拟)如图所示,质量为m的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其减速运动的加速度为g,此物体在斜面上能够上升的最大高度为h,则在这个过程中物体(  )A.重力势能增加了mghB.机械能损失了mghC.动能损失了mghD.克服摩擦力做功mghn[解析] 加速度a=g=,解得摩擦力Ff=mg;物体在斜面上能够上升的最大高度为h,所以重力势能增加了mgh,故A正确;损失的机械能为克服摩擦力做的功Ffx=mg·2h=mgh,故B正确,D错误;动能损失量为克服合外力做功的大小ΔEk=F合外力x=mg·2h=mgh,故C错误。[答案] AB(1)在应用功能关系解决具体问题的过程中,动能的变化用动能定理分析。(2)重力势能的变化用重力做功分析。(3)机械能的变化用除重力和弹力之外的力做功分析。(4)电势能的变化用电场力做功分析。[集训冲关]1.(2016·四川高考)韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员。他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1900J,他克服阻力做功100J。韩晓鹏在此过程中(  )A.动能增加了1900JB.动能增加了2000JC.重力势能减小了1900JD.重力势能减小了2000J解析:选C 根据动能定理得韩晓鹏动能的变化ΔE=WG+Wf=1900J-100J=1800J>0,故其动能增加了1800J,选项A、B错误;根据重力做功与重力势能变化的关系WG=-ΔEp,所以ΔEp=-WG=-1900J<0,故韩晓鹏的重力势能减小了1900J,选项C正确,D错误。2.(多选)如图所示,在绝缘的斜面上方,存在着匀强电场,电场方向平行于斜面向上,斜面上的带电金属块在平行于斜面的力F作用下沿斜面移动。已知金属块在移动的过程中,力F做功32J,金属块克服电场力做功8J,金属块克服摩擦力做功16J,重力势能增加18J,则在此过程中金属块的(  )A.动能减少10J      B.电势能增加24JC.机械能减少24JD.内能增加16J解析:选AD 根据动能定理,合力所做的功等于动能的变化量,则W合=WF+W电+W阻+W重=-10J,即动能减少10J,A正确;电势能的变化量等于克服电场力所做的功,即ΔEp电=-W电=8J,即电势能增加8J,B错误;机械能的变化量等于除重力以外的其他力所做的功,即E=WF+W电+W阻=8J,即机械能增加8J,C错误;内能的增加量等于克服n摩擦力做的功,即16J,D正确。3.如图所示,质量为1kg的滑块在倾角为30°的光滑斜面上,从a点由静止开始下滑,到b点开始压缩轻弹簧,到c点时达到最大速度,到d点(图中未画出)开始弹回,返回b点离开弹簧,恰能再回到a点。若bc=0.1m,弹簧弹性势能的最大值为8J,g取10m/s2,则下列说法正确的是(  )A.弹簧的劲度系数是50N/mB.从d点到b点滑块克服重力做功8JC.滑块的动能最大值为8JD.从d点到c点弹簧的弹力对滑块做功8J解析:选A 当滑块的合力为0时,滑块速度最大,即知在c点时滑块的速度最大,此瞬间滑块受力平衡,则有mgsin30°=kbc,可得k==50N/m,故选项A正确;滑块从d点到a点,运用动能定理得WG+W弹=0-0,又W弹=Ep=8J,可得WG=-8J,即克服重力做功8J,所以从d点到b点滑块克服重力做功小于8J,故选项B错误;滑块从a点到c点,由系统的机械能守恒知:滑块的动能增加量与弹簧弹性势能增加量之和等于滑块重力势能的减少量,小于8J,所以滑块的动能最大值小于8J,故选项C错误;弹簧弹性势能的最大值为8J,根据功能关系知从d点到b点弹簧的弹力对滑块做功8J,从d点到c点弹簧的弹力对滑块做功小于8J,故选项D错误。[考点二 能量守恒定律的应用]能量守恒定律是自然界的一条重要法则。也是高考的重要考点。解题的关键是能正确分析出各种能量形式的转化,最终找到“守恒”而列式。1.能量守恒定律(1)内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变。(2)表达式:ΔE减=ΔE增。2.对能量守恒定律的两点理解(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等。(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。3.能量转化问题的解题思路(1)当涉及摩擦力做功,机械能不守恒时,一般应用能的转化和守恒定律。(2)解题时,首先确定初、末状态,然后分析状态变化过程中哪种形式的能量减少,哪种形式的能量增加,求出减少的能量总和ΔE减与增加的能量总和ΔE增,最后由ΔE减=ΔE增列式求解。n[考法细研]考法1 多运动过程中的能量守恒问题 [例1] (2019·杭州模拟)在学校组织的趣味运动会上,某科技小组为大家提供了一个游戏。如图所示,将一质量为0.1kg的钢球放在O点,用弹射装置将其弹出,使其沿着光滑的半圆形轨道OA和AB运动。BC段为一段长为L=2.0m的粗糙平面,DEFG为接球槽。半圆形轨道OA和AB的半径分别为r=0.2m、R=0.4m,小球与BC段的动摩擦因数为μ=0.7,C点离接球槽的高度为h=1.25m,水平距离为x=0.5m,接球槽足够大,g取10m/s2。求:(1)要使钢球恰好不脱离半圆形轨道,钢球在A点的速度大小;(2)钢球恰好不脱离轨道时,在B位置对半圆形轨道的压力大小;(3)要使钢球最终能落入槽中,弹射速度v0至少多大。[解析] (1)要使钢球恰好不脱离半圆形轨道,钢球在最高点A时,对钢球分析有mg=m,解得vA=2m/s。(2)钢球从A到B的过程由动能定理得mg·2R=mvB2-mvA2,在B点有FN-mg=m,解得FN=6N,根据牛顿第三定律,钢球在B位置对半圆形轨道的压力大小为6N。(3)从C到D钢球做平抛运动,要使钢球恰好能落入槽中,则x=vCt,h=gt2,解得vC=1m/s,假设钢球在A点的速度恰为vA=2m/s时,钢球可运动到C点,且速度为vC′,从A到C由动能定理得mg·2R-μmgL=mvC′2-mvA2,解得vC′2<0,故当钢球在A点的速度恰为vA=2m/s时,钢球不可能到达C点,更不可能入槽,要使n钢球最终能落入槽中,需要更大的弹射速度,才能使钢球既不脱离轨道,又能落入槽中。当钢球到达C点速度为vC时,v0有最小值,从O到C由动能定理得mgR-μmgL=mvC2-mv02,解得v0=m/s。[答案] (1)2m/s (2)6N (3)m/s多过程问题的解题技巧(1)“合”——初步了解全过程,构建大致的运动图景。(2)“分”——将全过程进行分解,分析每个过程的规律。(3)“合”——找到子过程的联系,全过程或分过程解题。考法2 涉及弹簧(或橡皮绳)类的能量守恒问题 [例2] 如图所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数为μ=,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点,用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A和B,滑轮右侧轻绳与斜面平行,A的质量为2m=4kg,B的质量为m=2kg,初始时A到C点的距离为L=1m,现给A、B一初速度v0=3m/s,使A开始沿斜面向下运动,B向上运动,A将弹簧压缩到最短后又恰好能回到C点。已知重力加速度取g=10m/s2,不计空气阻力,整个过程中轻绳始终处于伸直状态,求此过程中:(1)A向下运动刚到C点时的速度大小;(2)弹簧的最大压缩量;(3)弹簧的最大弹性势能。[解析] (1)A从开始向下运动至刚到C点的过程中,对A、B组成的系统应用能量守恒定律可得:μ·2mgcosθ·L=×3mv02-×3mv2+2mgLsinθ-mgL解得:v=2m/s。(2)对A、B组成的系统,在A将弹簧压缩到最大压缩量,又返回到C点的过程中,系统动能的减少量等于因摩擦产生的热量,即:×3mv2-0=μ·2mgcosθ·2x其中x为弹簧的最大压缩量解得:x=0.4m。(3)设弹簧的最大弹性势能为Epmn由能量守恒定律可得:×3mv2+2mgxsinθ-mgx=μ·2mgcosθ·x+Epm解得:Epm=6J。[答案] (1)2m/s (2)0.4m (3)6J涉及弹簧的能量问题的解题方法两个或两个以上的物体与弹簧组成的系统相互作用的过程,具有以下特点:(1)能量变化上,如果只有重力和系统内弹簧弹力做功,系统机械能守恒。(2)如果系统每个物体除弹簧弹力外所受合外力为零,则当弹簧伸长或压缩到最大程度时物体速度相同。(3)当水平弹簧处于原长状态时,系统内某一端的物体具有最大速度。  考法3 能量守恒定律与图像结合的问题 [例3] (多选)一质量为m的小球以初动能Ek0从地面竖直向上抛出,已知运动过程中受到恒定阻力f=kmg作用(k为常数且满足0