- 483.00 KB
- 2022-07-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
导数大题训练一.解答题(共30小题)1.(2011•重庆)设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=﹣对称,且f′(1)=0(Ⅰ)求实数a,b的值(Ⅱ)求函数f(x)的极值.2.(2011•天津)已知函数f(x)=4x3+3tx2﹣6t2x+t﹣1,x∈R,其中t∈R.(Ⅰ)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)当t≠0时,求f(x)的单调区间;(Ⅲ)证明:对任意的t∈(0,+∞),f(x)在区间(0,1)内均存在零点.3.(2011•江西)设(1)若f(x)在上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]的最小值为,求f(x)在该区间上的最大值.4.(2011•江苏)已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a﹣b|的最大值.5.(2011•番禺区)(2009•绵阳二诊)已知f(x)=x3+mx2﹣x+2(m∈R).(1)如果函数f(x)的单调递减区间为(﹣,1),求函数f(x)的解析式;(2)(理)若f(x)的导函数为f′(x),对任意的x∈(0,+∞),不等式f′(x)≥2xlnx﹣1恒成立,求实数m的取值范围.(文)若f(x)的导函数为f′(x),对任意的x∈(0,+∞),不等式f′(x)≥2(1﹣m)恒成立,求实数m的取值范围.6.(2010•重庆)已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+f'(x)是奇函数.(1)求f(x)的表达式;(2)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值和最小值.7.(2010•浙江)已知函数f(x)=(x﹣a)2(x﹣b)(a,b∈R,a<b).(I)当a=1,b=2时,求曲线y=f(x)在点(2,f(x))处的切线方程;(II)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后的等差数列,并求x4.8.(2010•江西)设函数f(x)=6x3+3(a+2)x2+2ax.(1)若f(x)的两个极值点为x1,x2,且x1x2=1,求实数a的值;(2)是否存在实数a,使得f(x)是(﹣∞,+∞)上的单调函数?若存在,求出a的值;若不存在,说明理由.\n9.(2010•湖北)设函数,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,确定b、c的值.10.(2010•福建)已知函数f(x)=x3﹣x,其图象记为曲线C.(1)求函数f(x)的单调区间;(2)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积分别记为S1,S2,则为定值.11.(2010•北京)设定函数,且方程f′(x)﹣9x=0的两个根分别为1,4.(Ⅰ)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;(Ⅱ)若f(x)在(﹣∞,+∞)无极值点,求a的取值范围.12.(2009•重庆)已知f(x)=x2+bx+c为偶函数,曲线y=f(x)过点(2,5),g(x)=(x+a)f(x).(1)求曲线y=g(x)有斜率为0的切线,求实数a的取值范围;(2)若当x=﹣1时函数y=g(x)取得极值,确定y=g(x)的单调区间.13.(2009•浙江)已知函数f(x)=x3﹣(k2﹣k+1)x2+5x﹣2,g(x)=k2x2+kx+1,其中k∈R.(I)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求k的取值范围;(II)设函数是否存在k,对任意给定的非零实数x1,存在惟一的非零实数x2(x2≠x1),使得q′(x2)=q′(x1)?若存在,求k的值;若不存在,请说明理由.14.(2009•浙江)已知函数f(x)=x3+(1﹣a)x2﹣a(a+2)x+b(a,b∈R).(I)若函数f(x)的图象过原点,且在原点处的切线斜率是﹣3,求a,b的值;(Ⅱ)若函数f(x)在区间(﹣1,1)上不单调,求a的取值范围.15.(2009•天津)设函数x(x∈R),其中m>0.(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)求函数f(x)的单调区间与极值;(3)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围.16.(2009•四川)已知函数f(x)=x3+2bx2+cx﹣2的图象在与x轴交点处的切线方程是y=5x﹣10.(1)求函数f(x)的解析式;(2)设函数g(x)=f(x)+mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.17.(2009•陕西)已知函数f(x)=x3﹣3ax﹣1,a≠0(1)求f(x)的单调区间;(2)若f(x)在x=﹣1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.\n18.(2009•山东)已知函数,其中a≠0.(1)当a,b满足什么条件时,f(x)取得极值?(2)已知a>0,且f(x)在区间(0,1]上单调递增,试用a表示出b的取值范围.19.(2009•宁夏)已知函数f(x)=x3﹣3ax2﹣9a2x+a3.(1)设a=1,求函数f(x)的极值;(2)若,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,试确定a的取值范围.20.(2009•湖南)已知函数f(x)=x3+bx2+cx的导函数的图象关于直线x=2对称.(1)求b的值;(2)若f(x)在x=t处取得极小值,记此极小值为g(t),求g(t)的定义域和值域.21.(2009•湖北)已知关于x的函数f(x)=x3+bx2+cx+bc,其导函数为f+(x).令g(x)=|f+(x)|,记函数g(x)在区间[﹣1、1]上的最大值为M.(Ⅰ)如果函数f(x)在x=1处有极值﹣,试确定b、c的值:(Ⅱ)若|b|>1,证明对任意的c,都有M>2(Ⅲ)若M≧K对任意的b、c恒成立,试求k的最大值.22.(2009•福建)已知函数f(x)=x3+ax2+bx,且f′(﹣1)=0.(1)试用含a的代数式表示b;(2)求f(x)的单调区间;(3)令a=﹣1,设函数f(x)在x1、x2(x1<x2)处取得极值,记点M(x1,f(x1)),N(x2,f(x2)).证明:线段MN与曲线f(x)存在异于M,N的公共点.23.(2009•福建)已知函数f(x)=x3+ax2+bx,且f′(﹣1)=0.(1)试用含a的代数式表示b,并求f(x)的单调区间;(2)令a=﹣1,设函数f(x)在x1,x2(x1<x2)处取得极值,记点M(x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,请仔细观察曲线f(x)在点P处的切线与线段MP的位置变化趋势,并解释以下问题:(Ⅰ)若对任意的t∈(x1,x2),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;(Ⅱ)若存在点Q(n,f(n)),x≤n<m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程).24.(2008•重庆)设函数f(x)=x3+ax2﹣9x﹣1(a<0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求:(Ⅰ)a的值;(Ⅱ)函数f(x)的单调区间.25.(2008•四川)设函数f(x)=x3﹣x2﹣x+2.(Ⅰ)求f(x)的单调区间和极值;(Ⅱ)若当x∈[﹣1,2]时,﹣3≤af(x)+b≤3,求a﹣b的最大值.26.(2008•陕西)设函数f(x)=x3+ax2﹣a2x+1,g(x)=ax2﹣2x+1,其中实数a≠0.\n(Ⅰ)若a>0,求函数f(x)的单调区间;(Ⅱ)当函数y=f(x)与y=g(x)的图象只有一个公共点且g(x)存在最小值时,记g(x)的最小值为h(a),求h(a)的值域;(Ⅲ)若f(x)与g(x)在区间(a,a+2)内均为增函数,求a的取值范围.27.(2008•辽宁)设函数f(x)=ax3+bx2﹣3a2x+1(a,b∈R)在x=x1,x=x2处取得极值,且|x1﹣x2|=2.(Ⅰ)若a=1,求b的值,并求f(x)的单调区间;(Ⅱ)若a>0,求b的取值范围.28.(2008•湖北)已知函数f(x)=x3+mx2﹣m2x+1(m为常数,且m>0)有极大值9.(Ⅰ)求m的值;(Ⅱ)若斜率为﹣5的直线是曲线y=f(x)的切线,求此直线方程.29.(2008•福建)已知函数f(x)=x3+mx2+nx﹣2的图象过点(﹣1,﹣6),且函数g(x)=f′(x)+6x的图象关于y轴对称.(Ⅰ)求m、n的值及函数y=f(x)的单调区间;(Ⅱ)若a>0,求函数y=f(x)在区间(a﹣1,a+1)内的极值.30.(2008•北京)已知函数f(x)=x3+ax2+3bx+c(b≠0),且g(x)=f(x)﹣2是奇函数.(Ⅰ)求a,c的值;(Ⅱ)求函数f(x)的单调区间.\n答案与评分标准一.解答题(共30小题)1.(2011•重庆)设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=﹣对称,且f′(1)=0(Ⅰ)求实数a,b的值(Ⅱ)求函数f(x)的极值.考点:利用导数研究函数的极值;二次函数的性质。专题:计算题。分析:(Ⅰ)先对f(x)求导,f(x)的导数为二次函数,由对称性可求得a,再由f′(1)=0即可求出b(Ⅱ)对f(x)求导,分别令f′(x)大于0和小于0,即可解出f(x)的单调区间,继而确定极值.解答:解:(Ⅰ)因f(x)=2x3+ax2+bx+1,故f′(x)=6x2+2ax+b从而f′(x)=6y=f′(x)关于直线x=﹣对称,从而由条件可知﹣=﹣,解得a=3又由于f′(x)=0,即6+2a+b=0,解得b=﹣12(Ⅱ)由(Ⅰ)知f(x)=2x3+3x2﹣12x+1f′(x)=6x2+6x﹣12=6(x﹣1)(x+2)令f′(x)=0,得x=1或x=﹣2当x∈(﹣∞,﹣2)时,f′(x)>0,f(x)在(﹣∞,﹣2)上是增函数;当x∈(﹣2,1)时,f′(x)<0,f(x)在(﹣2,1)上是减函数;当x∈(1,+∞)时,f′(x)>0,f(x)在(1,+∞)上是增函数.从而f(x)在x=﹣2处取到极大值f(﹣2)=21,在x=1处取到极小值f(1)=﹣6.点评:本题考查函数的对称性、函数的单调区间和极值,考查运算能力.2.(2011•天津)已知函数f(x)=4x3+3tx2﹣6t2x+t﹣1,x∈R,其中t∈R.(Ⅰ)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)当t≠0时,求f(x)的单调区间;(Ⅲ)证明:对任意的t∈(0,+∞),f(x)在区间(0,1)内均存在零点.考点:利用导数研究曲线上某点切线方程;函数的零点;利用导数研究函数的单调性。专题:计算题。分析:(I)当t=1时,求出函数f(x),利用导数的几何意义求出x=0处的切线的斜率,利用点斜式求出切线方程;(II)根据f'(0)=0,解得x=﹣t或x=,讨论t的正负,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0求出单调区间即可;(III)根据函数的单调性分两种情况讨论,当≥1与当0<<1时,研究函数的单调性,然后根据区间端点的符号进行判定对任意t∈(0,2),f(x)在区间(0,1)内均存在零点从而得到结论.解答:解:(I)当t=1时,f(x)=4x3+3x2﹣6x,f(0)=0f'(x)=12x2+6x﹣6,f'(0)=﹣6,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=﹣6x.(II)解:f'(x)=12x2+6tx﹣6t2,f'(0)=0,解得x=﹣t或x=∵t≠0,以下分两种情况讨论:(1)若t<0,则<﹣t,∴f(x)的单调增区间是(﹣∞,),(﹣t,+∞);f(x)的单调减区间是(,﹣t)(2)若t>0,则>﹣t,∴f(x)的单调增区间是(﹣∞,﹣t),(,+∞);f(x)的单调减区间是(﹣t,)\n(III)证明:由(II)可知,当t>0时,f(x)在(0,)内单调递减,在(,+∞)内单调递增,以下分两种情况讨论:(1)当≥1,即t≥2时,f(x)在(0,1)内单调递减.f(0)=t﹣1>0,f(1)=﹣6t2+4t+3≤﹣13<0所以对于任意t∈[2,+∞),f(x)在区间(0,1)内均存在零点.(2)当0<<1,即0<t<2时,f(x)在(0,)内单调递减,在(,1)内单调递增若t∈(0,1],f()=+t﹣1≤<0,f(1)=)=﹣6t2+4t+3≥﹣2t+3>0所以f(x)在(,1)内存在零点.若t∈(1,2),f()=+t﹣1<+1<0,f(0)=t﹣1>0∴f(x)在(0,)内存在零点.所以,对任意t∈(0,2),f(x)在区间(0,1)内均存在零点.综上,对于任意t∈(0,+∞),f(x)在区间(0,1)内均存在零点.点评:本题主要考查了导数的几何意义,利用导数研究函数的单调性、曲线的切线方程、函数零点、解不等式等基础知识,考查了计算能力和分类讨论的思想.3.(2011•江西)设(1)若f(x)在上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]的最小值为,求f(x)在该区间上的最大值.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值。专题:计算题。分析:(1)利用函数递增,导函数大于0恒成立,求出导函数的最大值,使最大值大于0.(2)求出导函数的根,判断出根左右两边的导函数的符号,求出端点值的大小,求出最小值,列出方程求出a,求出最大值.解答:解:(1)f′(x)=﹣x2+x+2af(x)在存在单调递增区间∴f′(x)>0在有解∵f′(x)=﹣x2+x+2a对称轴为∴递减∴解得.(2)当0<a<2时,△>0;\nf′(x)=0得到两个根为;(舍)∵∴时,f′(x)>0;时,f′(x)<0当x=1时,f(1)=2a+;当x=4时,f(4)=8a<f(1)当x=4时最小∴=解得a=1所以当x=时最大为点评:本题考查利用导函数求参数的范围、利用导函数求函数的单调性、求函数的最值.4.(2011•江苏)已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a﹣b|的最大值.考点:利用导数研究函数的单调性。专题:计算题。分析:(1)先求出函数f(x)和g(x)的导函数,再利用函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致即f'(x)g'(x)≥0在[﹣1,+∞)上恒成立,以及3x2+a>0,来求实数b的取值范围;(2)先求出f'(x)=0的根以及g'(x)=0的根,再分别求出两个函数的单调区间,综合在一起看何时函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,进而求得|a﹣b|的最大值.解答:解:f'(x)=3x2+a,g'(x)=2x+b.(1)由题得f'(x)g'(x)≥0在[﹣1,+∞)上恒成立.因为a>0,故3x2+a>0,进而2x+b≥0,即b≥﹣2x在[﹣1,+∞)上恒成立,所以b≥2.故实数b的取值范围是[2,+∞)(2)令f'(x)=0,得x=.若b>0,由a<0得0∈(a,b).又因为f'(0)g'(0)=ab<0,所以函数f(x)和g(x)在(a,b)上不是单调性一致的.因此b≤0.现设b≤0,当x∈(﹣∞,0)时,g'(x)<0;当x∈(﹣∝,﹣)时,,f'(x)>0.因此,当x∈(﹣∝,﹣)时,f'(x)g'(x)<0.故由题设得a≥﹣且b≥﹣,从而﹣≤a<0,于是﹣<b<0,因此|a﹣b|≤,且当a=,b=0时等号成立,又当a=,b=0时,f'(x)g'(x)=6x(x2﹣),从而当x∈(﹣,0)时f'(x)g'(x)>0.故函数f(x)和g(x)在(﹣,0)上单调性一致,因此|a﹣b|的最大值为.点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.5.(2011•番禺区)(2009•绵阳二诊)已知f(x)=x3+mx2﹣x+2(m∈R).(1)如果函数f(x)的单调递减区间为(﹣,1),求函数f(x)的解析式;\n(2)(理)若f(x)的导函数为f′(x),对任意的x∈(0,+∞),不等式f′(x)≥2xlnx﹣1恒成立,求实数m的取值范围.(文)若f(x)的导函数为f′(x),对任意的x∈(0,+∞),不等式f′(x)≥2(1﹣m)恒成立,求实数m的取值范围.考点:导数在最大值、最小值问题中的应用;函数的单调性与导数的关系。专题:综合题。分析:(1)求导函数,令f′(x)<0,利用函数f(x)的单调递减区间为(﹣,1),得到3x2+2mx﹣1=0的两根分别是﹣,1,代入即可求出m,从而求出函数f(x)的解析式;(2)(理)对任意x∈(0,+∞),不等式f′(x)≥2xlnx﹣1恒成立,等价于即m≥lnx﹣x在x∈(0,+∞)时恒成立,求出右边对应函数的最大值,即可得到m的范围.(文)3x2+2mx﹣1≥2(1﹣m)在x∈(0,+∞)时恒成立,等价于m≥(1﹣x)在x∈(0,+∞)时恒成立,求出右边对应函数的最大值,即可得到m的范围.解答:解:(1)f′(x)=3x2+2mx﹣1.由题意f′(x)=3x2+2mx﹣1<0的解集是(﹣,1),即3x2+2mx﹣1=0的两根分别是﹣,1.将x=1或x=﹣代入方程3x2+2mx﹣1=0得m=﹣1.∴f(x)=x3﹣x2﹣x+2.(2)(理)由题意知3x2+2mx﹣1≥2xlnx﹣1在x∈(0,+∞)时恒成立,即m≥lnx﹣x在x∈(0,+∞)时恒成立.设h(x)=lnx﹣,则h′(x)=﹣.令h′(x)=0,得x=.令h′(x)>0,则0<x<,;令h′(x)<0,则x>,∴当x=时,h(x)取得最大值,h(x)max=ln﹣1=ln2﹣ln3e,所以m≥ln2﹣ln3e.因此m的取值范围是[ln2﹣ln3e,+∞).(文)由题意知3x2+2mx﹣1≥2(1﹣m)在x∈(0,+∞)时恒成立,即2mx+2m≥3﹣3x2,所以2m(x+1)≥3(1﹣x2).由于x∈(0,+∞),于是2m≥3(1﹣x),得m≥(1﹣x).而(1﹣x)<,所以m的取值范围为[,+∞).点评:本题重点考查导数知识的运用,考查学生利用导数研究函数极值的能力,以及不等式恒成立时条件的理解能力,解题的关键是求出导函数,分离参数.6.(2010•重庆)已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+f'(x)是奇函数.(1)求f(x)的表达式;(2)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值和最小值.\n考点:利用导数求闭区间上函数的最值;函数解析式的求解及常用方法;奇函数。专题:计算题。分析:(Ⅰ)由f'(x)=3ax2+2x+b得g(x)=fax2+(3a+1)x2+(b+2)x+b,再由函数g(x)是奇函数,由g(﹣x)=﹣g(x),利用待系数法求解.(2)由(1)知,再求导g'(x)=﹣x2+2,由g'(x)≥0求得增区间,由g'(x)≤0求得减区间;求最值时从极值和端点值中取.解答:解:(1)由题意得f'(x)=3ax2+2x+b因此g(x)=f(x)+f'(x)=ax3+(3a+1)x2+(b+2)x+b因为函数g(x)是奇函数,所以g(﹣x)=﹣g(x),即对任意实数x,有a(﹣x)3+(3a+1)(﹣x)2+(b+2)(﹣x)+b=﹣[ax3+(3a+1)x2+(b+2)x+b]从而3a+1=0,b=0,解得,因此f(x)的解析表达式为.(2)由(Ⅰ)知,所以g'(x)=﹣x2+2,令g'(x)=0解得则当时,g'(x)<0从而g(x)在区间,上是减函数,当,从而g(x)在区间上是增函数,由前面讨论知,g(x)在区间[1,2]上的最大值与最小值只能在时取得,而,因此g(x)在区间[1,2]上的最大值为,最小值为.点评:本题主要考查构造新函数,用导数研究函数的单调性和求函数的最值.7.(2010•浙江)已知函数f(x)=(x﹣a)2(x﹣b)(a,b∈R,a<b).(I)当a=1,b=2时,求曲线y=f(x)在点(2,f(x))处的切线方程;(II)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后的等差数列,并求x4.考点:利用导数研究函数的极值;简单复合函数的导数;等差数列的性质。专题:证明题;综合题。分析:(1)将a,b的值代入后对函数f(x)进行求导,根据导数的几何意义即函数在某点的导数值等于该点的切线的斜率,可得答案.(2)对函数f(x)求导,令导函数等于0解出x的值,然后根据x3是f(x)的一个零点可得到x3=b,然后根据等差数列的性质可得到答案.解答:(Ⅰ)解:当a=1,b=2时,因为f′(x)=(x﹣1)(3x﹣5)故f′(2)=1f(2)=0,所以f(x)在点(2,0)处的切线方程为y=x﹣2;(Ⅱ)证明:因为f′(x)=3(x﹣a)(x﹣),由于a<b.\n故a<.所以f(x)的两个极值点为x=a,x=.不妨设x1=a,x2=,因为x3≠x1,x3≠x2,且x3是f(x)的零点,故x3=b.又因为﹣a=2(b﹣),x4=(a+)=,所以a,,,b依次成等差数列,所以存在实数x4满足题意,且x4=.点评:本题主要考查函数的极值概念、导数运算法则、切线方程、导线应用、等差数列等基础知识,同时考查抽象概括、推理论证能力和创新意识.8.(2010•江西)设函数f(x)=6x3+3(a+2)x2+2ax.(1)若f(x)的两个极值点为x1,x2,且x1x2=1,求实数a的值;(2)是否存在实数a,使得f(x)是(﹣∞,+∞)上的单调函数?若存在,求出a的值;若不存在,说明理由.考点:利用导数研究函数的极值;利用导数研究函数的单调性。专题:计算题。分析:(1)先求原函数的导函数,根据导函数在极值点处的值为零建立等式关系,求出参数a即可;(2)根据二次函数的判别式进行判定能否使导函数恒大于零,如果能就存在,否则就不存在.解答:解:f′(x)=18x2+6(a+2)x+2a(1)由已知有f′(x1)=f′(x2)=0,从而,所以a=9;(2)由△=36(a+2)2﹣4×18×2a=36(a2+4)>0,所以不存在实a,使得f(x)是R上的单调函数.点评:本题主要考查函数利用导数处理函数极值单调性等知识,是高考中常考的问题,属于基础题.9.(2010•湖北)设函数,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,确定b、c的值.考点:利用导数研究曲线上某点切线方程。专题:计算题。分析:先求出函数f(x)的导函数f′(x),再根据曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,可得f(0)=1,f′(0)=0,解之即可求出所求.解答:解:由f(x)=得:f(0)=c,f′(x)=x2﹣ax+b,f′(0)=b.又由曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,得到f(0)=1,f′(0)=0.故b=0,c=1.点评:本题主要考查了利用导数研究曲线上某点切线方程,考查运算求解能力、推理论证能力,化归与转化思想,属于基础题.\n10.(2010•福建)已知函数f(x)=x3﹣x,其图象记为曲线C.(1)求函数f(x)的单调区间;(2)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积分别记为S1,S2,则为定值.考点:利用导数研究函数的单调性;定积分;合情推理的含义与作用。专题:计算题;证明题。分析:(1)先求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0解得的区间为增区间和fˊ(x)<0解得的区间为减区间,注意单调区间不能并;(2)先求出点P1与点P2的横坐标的关系,再求定积分求出围成封闭图形的面积S1,利用同样的方法求出面积S2即可.解答:解:(1)由f(x)=x3﹣x得f′(x)=3x2﹣1=,当和时,f′(x)>0;当,时,f′(x)<0,因此,f(x)的单调递增区间为和,单调递减区间为,.(2)曲线C与其在点P1处的切线方程为y=(3x12﹣1)(x﹣x1)+x13﹣x1,即即y=(3x12﹣1)x﹣2x13,由解得x=x1或x=﹣2x1故x2=﹣2x1,进而有S1=|(x3﹣3x13x+2x13)dx|=,用x2代替x1,重复上述计算过程,可得x3=﹣2x2和,又x2=﹣2x1≠0,所以S2≠0,因此有点评:本小题主要考查函数、导数、定积分等基础知识,考查抽象概括能力、运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想、特殊与一般思想.11.(2010•北京)设定函数,且方程f′(x)﹣9x=0的两个根分别为1,4.(Ⅰ)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;(Ⅱ)若f(x)在(﹣∞,+∞)无极值点,求a的取值范围.考点:利用导数研究函数的极值;一元二次方程的根的分布与系数的关系。专题:综合题。分析:先对函数f(x)进行求导,然后代入f′(x)﹣9x=0中,再由方程有两根1、4可得两等式;(1)将a的值代入即可求出b,c的值,再由f(0)=0可求d的值,进而确定函数解析式.(2)f(x)在(﹣∞,+∞)无极值点即函数f(x)是单调函数,且可判断是单调增函数,再由导函数大于等于0在R上恒成立可解.解答:解:由得f′(x)=ax2+2bx+c因为f′(x)﹣9x=ax2+2bx+c﹣9x=0的两个根分别为1,4,所以(*)\n(Ⅰ)当a=3时,又由(*)式得解得b=﹣3,c=12又因为曲线y=f(x)过原点,所以d=0故f(x)=x3﹣3x2+12x(Ⅱ)由于a>0,所以“在(﹣∞,+∞)内无极值点”等价于“f′(x)=ax2+2bx+c≥0在(﹣∞,+∞)内恒成立”.由(*)式得2b=9﹣5a,c=4a.又△=(2b)2﹣4ac=9(a﹣1)(a﹣9)解得a∈[1,9]即a的取值范围[1,9]点评:本题主要考查函数的单调性、极值点与其导函数之间的关系.属基础题.12.(2009•重庆)已知f(x)=x2+bx+c为偶函数,曲线y=f(x)过点(2,5),g(x)=(x+a)f(x).(1)求曲线y=g(x)有斜率为0的切线,求实数a的取值范围;(2)若当x=﹣1时函数y=g(x)取得极值,确定y=g(x)的单调区间.考点:导数的几何意义;利用导数研究函数的单调性;函数在某点取得极值的条件。分析:(1)据偶函数的定义f(﹣x)=f(x)求出b值,将点(2,5)代入得c值,据导数在切点处的导数值为切线斜率,有g′(x)=0有实数解,由△≥0得范围.(2),函数在极值点处的导数值为0,导数大于0对应区间是单调递增区间;导数小于0对应区间是单调递减区间.解答:解:(1)∵f(x)=x2+bx+c为偶函数,故f(﹣x)=f(x)即有(﹣x)2+b(﹣x)+c=x2+bx+c解得b=0又曲线y=f(x)过点(2,5),得22+c=5,有c=1∵g(x)=(x+a)f(x)=x3+ax2+x+a从而g′(x)=3x2+2ax+1,∵曲线y=g(x)有斜率为0的切线,故有g′(x)=0有实数解.即3x2+2ax+1=0有实数解.此时有△=4a2﹣12≥0解得a∈(﹣∞,﹣]∪[,+∞)所以实数a的取值范围:a∈(﹣∞,﹣]∪[,+∞);(2)因x=﹣1时函数y=g(x)取得极值,故有g′(﹣1)=0即3﹣2a+1=0,解得a=2又g′(x)=3x2+4x+1=(3x+1)(x+1)令g′(x)=0,得x1=﹣1,x2=当x∈(﹣∞,﹣1)时,g′(x)>0,故g(x)在(﹣∞,﹣1)上为增函数当时,g′(x)<0,故g(x)在(﹣1,﹣)上为减函数当x∈(﹣)时,g′(x)>0,故g(x)在上为增函数.点评:本题考查偶函数的定义;利用导数几何意义求曲线切线方程;利用导数求函数单调区间.13.(2009•浙江)已知函数f(x)=x3﹣(k2﹣k+1)x2+5x﹣2,g(x)=k2x2+kx+1,其中k∈R.(I)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求k的取值范围;(II)设函数是否存在k,对任意给定的非零实数x1,存在惟一的非零实数x2(x2≠x1),使得q′(x2)=q′(x1)?若存在,求k的值;若不存在,请说明理由.考点:利用导数研究函数的单调性;函数的单调性与导数的关系。\n专题:计算题;分类讨论。分析:(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)﹣1,先求导数:p′(x),因p(x)在区间(0,3)上不单调,得到p′(x)=0在(0,3)上有实数解,且无重根,再利用分离参数的方法得出,最后再利用导数求出此函数的值域即可;(II)先根据题意得出当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,分类讨论:(ⅰ)当x1>0时,(ⅱ)当x1<0时,最后综合(ⅰ)(ⅱ)即可得出k值.解答:解析:(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)﹣1,p′(x)=3x2+2(k﹣1)x+(k+5),因p(x)在区间(0,3)上不单调,所以p′(x)=0在(0,3)上有实数解,且无重根,由p′(x)=0得k(2x+1)=﹣(3x2﹣2x+5),∴,令t=2x+1,有t∈(1,7),记,则h(t)在(1,3]上单调递减,在[3,7)上单调递增,所以有h(t)∈[6,10),于是,得k∈(﹣5,﹣2],而当k=﹣2时有p′(x)=0在(0,3)上有两个相等的实根x=1,故舍去,所以k∈(﹣5,﹣2);(II)当x<0时有q′(x)=f′(x)=3x2﹣2(k2﹣k+1)x+5;当x>0时有q′(x)=g′(x)=2k2x+k,因为当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,记A=(k,+∞),B=(5,+∞)(ⅰ)当x1>0时,q′(x)在(0,+∞)上单调递增,所以要使q′(x2)=q′(x1)成立,只能x2<0且A⊆B,因此有k≥5,(ⅱ)当x1<0时,q′(x)在(0,+∞)上单调递减,所以要使q′(x2)=q′(x1)成立,只能x2>0且A⊆B,因此k≤5,综合(ⅰ)(ⅱ)k=5;当k=5时A=B,则∀x1<0,q′(x1)∈B=A,即∃x2>0,使得q′(x2)=q′(x1)成立,因为q′(x)在(0,+∞)上单调递增,所以x2的值是唯一的;同理,∀x1<0,即存在唯一的非零实数x2(x2≠x1),要使q′(x2)=q′(x1)成立,所以k=5满足题意.点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题的综合能力,属于中档题.14.(2009•浙江)已知函数f(x)=x3+(1﹣a)x2﹣a(a+2)x+b(a,b∈R).(I)若函数f(x)的图象过原点,且在原点处的切线斜率是﹣3,求a,b的值;(Ⅱ)若函数f(x)在区间(﹣1,1)上不单调,求a的取值范围.考点:利用导数研究函数的单调性;导数的几何意义。专题:综合题;转化思想。分析:(Ⅰ)先求导数:f'(x)=3x2+2(1﹣a)x﹣a(a+2),再利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.列出关于a,b等式解之,从而问题解决.\n(Ⅱ)根据题中条件:“函数f(x)在区间(﹣1,1)不单调,”等价于“导函数f'(x)在(﹣1,1)既能取到大于0的实数,又能取到小于0的实数”,由于导函数是一个二次函数,有两个根,故问题可以转化为到少有一根在在区间(﹣1,1)内,先求两根,再由以上关系得到参数的不等式,解出两个不等式的解集,求其并集即可;解答:解析:(Ⅰ)由题意得f'(x)=3x2+2(1﹣a)x﹣a(a+2)又,解得b=0,a=﹣3或a=1(Ⅱ)函数f(x)在区间(﹣1,1)不单调,等价于导函数f'(x)[是二次函数],在(﹣1,1有实数根但无重根.∵f'(x)=3x2+2(1﹣a)x﹣a(a+2)=(x﹣a)[3x+(a+2)],令f'(x)=0得两根分别为x=a与x=若a=即a=﹣时,此时导数恒大于等于0,不符合题意,当两者不相等时即a≠﹣时有a∈(﹣1,1)或者∈(﹣1,1)解得a∈(﹣5,1)且a≠﹣综上得参数a的取值范围是(﹣5,﹣)∪(﹣,1)点评:本小题主要考查函数单调性的应用、函数奇偶性的应用、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.15.(2009•天津)设函数x(x∈R),其中m>0.(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)求函数f(x)的单调区间与极值;(3)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围.考点:导数的几何意义;利用导数研究函数的单调性;利用导数研究函数的极值;利用导数求闭区间上函数的最值。分析:(1),易得函数在所求点的斜率.(2)当f′(x)≥0,函数单增,f′(x)≤0时单减,使f′(x)=0的点为极值点.(3)由题意属于区间[x1,x2]的点的函数值均大于f(1),由此计算m的范围.解答:解:(1)当,故f'(x)=1,所以曲线y=f(x)在点(1,f(1))处的切线的斜率为1.(2分)(2)f'(x)=﹣x2+2x+m2﹣1,令f'(x)=0,解得x=1﹣m或x=1+m.∵m>0,所以1+m>1﹣m,当x变化时,f'(x),f(x)的变化情况如下表:\n∴f(x)在(﹣∞,1﹣m),(1+m,+∞)内是减函数,在(1﹣m,1+m)内是增函数.函数f(x)在x=1﹣m处取得极小值f(1﹣m),且f(1﹣m)=,函数f(x)在x=1+m处取得极大值f(1+m),且f(1+m)=.(6分)(3)由题设,,∴方程有两个相异的实根x1,x2,故,解得m,(8分)∵x1<x2,所以2x2>x1+x2=3,故x2>.(10分)若不合题意,若1<x1<x2,对任意的x∈[x1,x2],有x>0,x﹣x1≥0,x﹣x2≤0,则,又f(x1)=0,所以f(x)在[x1,x2]上的最小值为0,于是对任意的x∈[x1,x2],f(x)>f(1)恒成立的充要条件是f(1)=m2﹣<0,解得,综上,m的取值范围是(,).(14分)点评:本题较为复杂,主要考查了直线的点斜式,函数的单调性及函数的极值问题,注意掌握个知识点间的关系.16.(2009•四川)已知函数f(x)=x3+2bx2+cx﹣2的图象在与x轴交点处的切线方程是y=5x﹣10.(1)求函数f(x)的解析式;(2)设函数g(x)=f(x)+mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.考点:利用导数研究函数的极值;函数解析式的求解及常用方法;利用导数研究曲线上某点切线方程。专题:计算题。分析:(1)利用f(2)=0和f′(2)=5可得关于b,c的两个方程,解出b,c即可.(2)转化为g′(x)=0有实根.根据判别式求出对应的根,在找极值即可.解答:解:(1)由已知,切点为(2,0),故有f(2)=0,即4b+c+3=0.①f′(x)=3x2+4bx+c,由已知,f′(2)=12+8b+c=5.得8b+c+7=0.②\n联立①、②,解得c=1,b=﹣1,于是函数解析式为f(x)=x3﹣2x2+x﹣2.(2)g(x)=x3﹣2x2+x﹣2+mx,g′(x)=3x2﹣4x+1+,令g′(x)=0.当函数有极值时,△≥0,方程3x2﹣4x+1+=0有实根,由△=4(1﹣m)≥0,得m≤1.①当m=1时,g′(x)=0有实根x=,在x=左右两侧均有g′(x)>0,故函数g(x)无极值.②当m<1时,g′(x)=0有两个实根,x1=(2﹣),x2=(2+),当x变化时,g′(x)、g(x)的变化情况如下表:故在m∈(﹣∞,1)时,函数g(x)有极值;当x=(2﹣)时g(x)有极大值;当x=(2+)时g(x)有极小值.点评:本题考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.17.(2009•陕西)已知函数f(x)=x3﹣3ax﹣1,a≠0(1)求f(x)的单调区间;(2)若f(x)在x=﹣1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.考点:利用导数研究函数的单调性;利用导数研究函数的极值。分析:(1)先确求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的区间是增区间,fˊ(x)<0的区间是减区间.(2)先根据极值点求出a,然后利用导数研究函数的单调性,求出极值以及端点的函数值,观察可知m的范围.解答:解析:(1)f′(x)=3x2﹣3a=3(x2﹣a),当a<0时,对x∈R,有f′(x)>0,当a<0时,f(x)的单调增区间为(﹣∞,+∞)当a>0时,由f′(x)>0解得或;由f′(x)<0解得,当a>0时,f(x)的单调增区间为;f(x)的单调减区间为.(2)因为f(x)在x=﹣1处取得极大值,所以f′(﹣1)=3×(﹣1)2﹣3a=0,∴a=1.所以f(x)=x3﹣3x﹣1,f′(x)=3x2﹣3,由f′(x)=0解得x1=﹣1,x2=1.由(1)中f(x)的单调性可知,f(x)在x=﹣1处取得极大值f(﹣1)=1,在x=1处取得极小值f(1)=﹣3.因为直线y=m与函数y=f(x)的图象有三个不同的交点,又f(﹣3)=﹣19<﹣3,f(3)=17>1,\n结合f(x)的单调性可知,m的取值范围是(﹣3,1).点评:本题主要考查了利用导数研究函数的极值,以及求最值和利用导数研究图象等问题,属于中档题.18.(2009•山东)已知函数,其中a≠0.(1)当a,b满足什么条件时,f(x)取得极值?(2)已知a>0,且f(x)在区间(0,1]上单调递增,试用a表示出b的取值范围.考点:利用导数研究函数的极值;利用导数研究函数的单调性。专题:计算题;分类讨论。分析:(1)对函数求导,由题意可得f′(x)=0有解,由a≠0,分a>0,a<0讨论可求解(2)f(x)在区间(0,1]上单调递增,可得f′(x)≥0在[0,1]上恒成立,从而转化为求函数的最值,可求解.解答:解:(1)由已知得f′(x)=ax2+2bx+1,令f′(x)=0,得ax2+2bx+1=0,f(x)要取得极值,方程ax2+2bx+1=0,必须有解,所以△=4b2﹣4a>0,即b2>a,此时方程ax2+2bx+1=0的根为x1==,x2==,,所以f′(x)=a(x﹣x1)(x﹣x2)当a>0时,所以f(x)在x1,x2处分别取得极大值和极小值.当a<0时,所以f(x)在x1,x2处分别取得极大值和极小值.综上,当a,b满足b2>a时,f(x)取得极值.(2)要使f(x)在区间(0,1]上单调递增,需使f′(x)=ax2+2bx+1≥0在(0,1]上恒成立.即b≥﹣﹣,x∈(0,1]恒成立,所以b≥﹣设g(x)=﹣﹣,g′(x)=﹣+=,令g′(x)=0得x=或x=﹣(舍去),当a>1时,0<<1,当x∈(0,]时g′(x)>0,g(x)=﹣﹣单调增函数;\n当x∈(,1]时g′(x)<0,g(x)=﹣﹣单调减函数,所以当x=时,g(x)取得最大,最大值为g()=﹣.所以b≥﹣当0<a≤1时,≥1,此时g′(x)≥0在区间(0,1]恒成立,所以g(x)=﹣﹣在区间(0,1]上单调递增,当x=1时g(x)最大,最大值为g(1)=﹣,所以b≥﹣综上,当a>1时,b≥﹣;0<a≤1时,b≥﹣;点评:本题考查了函数极值取得的条件,函数的单调区间问题:由f′(x)>0,解得函数的单调增区间;反之函数在[a,b]上单调递增,则f′(x)≥0恒成立,进而转化为求函数在区间[a,b]上的最值问题,体现了分类讨论及转化思想在解题中的应用.19.(2009•宁夏)已知函数f(x)=x3﹣3ax2﹣9a2x+a3.(1)设a=1,求函数f(x)的极值;(2)若,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,试确定a的取值范围.考点:利用导数研究函数的极值;函数恒成立问题。专题:计算题。分析:(1)把a=1代入,找出导函数为0的自变量,看在自变量左右两侧导函数的符号来求极值即可.(2)转化为求导函数的绝对值在x∈[1,4a]上的最大值即可.解答:解:(1)当a=1时,对函数f(x)求导数,得f′(x)=3x2﹣6x﹣9.令f′(x)=0,解得x1=﹣1,x2=3.列表讨论f(x),f′(x)的变化情况:所以,f(x)的极大值是f(﹣1)=6,极小值是f(3)=﹣26.(2)f′(x)=3x2﹣6ax﹣9a2的图象是一条开口向上的抛物线,关于x=a对称.若,则f′(x)在[1,4a]上是增函数,从而(x)在[1,4a]上的最小值是f′(1)=3﹣6a﹣9a2,最大值是f′(4a)=15a2.由|f′(x)|≤12a,得﹣12a≤3x2﹣6ax﹣9a2≤12a,于是有(1)=3﹣6a﹣9a2≥﹣12a,且f′(4a)=15a2≤12a.由f′(1)≥﹣12a得﹣≤a≤1,由f′(4a)≤12a得所以,即.若a>1,则∵|f′(a)|=15a2>12a.故当x∈[1,4a]时|f′(x)|≤12a不恒成立.\n所以使|f′(x)|≤12a(x∈[1,4a])恒成立的a的取值范围是点评:本题涉及到利用导函数求极值.利用导函数求极值时,须先求导函数为0的根,再根据导函数为0的根左右两侧的符号来求极大值和极小值.20.(2009•湖南)已知函数f(x)=x3+bx2+cx的导函数的图象关于直线x=2对称.(1)求b的值;(2)若f(x)在x=t处取得极小值,记此极小值为g(t),求g(t)的定义域和值域.考点:利用导数求闭区间上函数的最值;函数的定义域及其求法;函数的值域。专题:计算题。分析:(1)函数f(x)=x3+bx2+cx的导函数的图象关于直线x=2对称,则求出f′(x)得到一个二次函数,利用x==2求出b即可;(2)求出f′(x),由(1)得函数的对称轴为x=2,讨论c的取值范围求出g(t)的定义域和值域即可.解答:解:(1)f′(x)=3x2+2bx+c因为函数f′(x)的图象关于直线x=2对称,所以,于是b=﹣6(2)由(Ⅰ)知,,f(x)=x3﹣6x2+cxf′(x)=3x2﹣12x+c=3(x﹣2)2+c﹣12(ⅰ)当c≥12时,f′(x)≥0,此时f(x)无极值.(ii)当c<12时,f′(x)=0有两个互异实根x1,x2.不妨设x1<x2,则x1<2<x2.当x<x1时,f′(x)>0,f(x)在区间(﹣∞,x1)内为增函数;当x1<x<x2时,f′(x)<0,f(x)在区间(x1,x2)内为减函数;当x>x2时,f′(x)>0,f(x)在区间(x2,+∞)内为增函数.所以f(x)在x=x1处取极大值,在x=x2处取极小值.因此,当且仅当c<12时,函数f(x)在x=x2处存在唯一极小值,所以t=x2>2.于是g(t)的定义域为(2,+∞).由f′(t)=3t2﹣12t+c=0得c=﹣3t2+12t.于是g(t)=f(t)=t3﹣6t2+ct=﹣2t3+6t2,t∈(2,+∞).当t>2时,g′(t)=﹣6t2+12t=6t(2﹣t)<0所以函数g(t)在区间(2,+∞)内是减函数,故g(t)的值域为(﹣∞,8)点评:考查学生利用导数求函数函数的单调性及确定函数极值存在位置的能力,以及利用导数求函数最值的能力.利用导数研究函数的单调性是函数的一个极其重要的应用,它大大简化了证明单调性的方法.21.(2009•湖北)已知关于x的函数f(x)=x3+bx2+cx+bc,其导函数为f+(x).令g(x)=|f+(x)|,记函数g(x)在区间[﹣1、1]上的最大值为M.(Ⅰ)如果函数f(x)在x=1处有极值﹣,试确定b、c的值:(Ⅱ)若|b|>1,证明对任意的c,都有M>2(Ⅲ)若M≧K对任意的b、c恒成立,试求k的最大值.考点:利用导数研究函数的极值;利用导数求闭区间上函数的最值。专题:综合题;分类讨论。\n分析:(I)对函数求导,由题意可得,代入可求b,c,代入验证,找出符合条件的值.(II)(法1)代入整理g(x)=||﹣(x﹣b)2+b2+c|,结合|b|>1的条件判断函数f′(x)的对称轴与区间[﹣1,1]的位置关系,从而求出该函数在[﹣1,1]上的最大值M,则M≥f′(1),M≥f′(﹣1),可证(法2)利用反证法:假设M<2,由(1)可知M应是g(﹣1)和g(1)中较大的一个,则有,代入课产生矛盾.(III)(法1)M≥k恒成立⇔k≤Mmin,转化为求M的最小值当|b|>1,结合(II)讨论|b|≤1两只情况讨论,此时M=max{g(﹣1),g(1),g(b)},结合条件推理论证.(法2)仿照法1,利用二次函数在区间[﹣1,1]的图象及性质求出M={g(﹣1),g(1),g(b)},求出M的最小值,解答:(I)解:∵f'(x)=﹣x2+2bx+c,由f(x)在x=1处有极值可得解得,或若b=1,c=﹣1,则f'(x)=﹣x2+2x﹣1=﹣(x﹣1)2≤0,此时f(x)没有极值;若b=﹣1,c=3,则f'(x)=﹣x2﹣2x+3=﹣(x+1)(x﹣1)当x变化时,f(x),f'(x)的变化情况如下表:x(﹣∞,﹣3)﹣3(﹣3,1)1(1,+∞)f'(x)﹣0+0﹣f(x)↘极小值﹣12↗极大值↘∴当x=1时,f(x)有极大值,故b=﹣1,c=3即为所求.(Ⅱ)证法1:g(x)=|f'(x)|=|﹣(x﹣b)2+b2+c|当|b|>1时,函数y=f'(x)的对称轴x=b位于区间[﹣1.1]之外.∴f'(x)在[﹣1,1]上的最值在两端点处取得故M应是g(﹣1)和g(1)中较大的一个,∴2M≥g(1)+g(﹣1)=|﹣1+2b+c|+|﹣1﹣2b+c|≥|4b|>4,即M>2证法2(反证法):因为|b|>1,所以函数y=f'(x)的对称轴x=b位于区间[﹣1,1]之外,∴f'(x)在[﹣1,1]上的最值在两端点处取得.故M应是g(﹣1)和g(1)中较大的一个假设M≤2,则M=maxg{(﹣1),g(1),g(b)}将上述两式相加得:4≥|﹣1﹣2b+c|+|﹣1+2b+c|≥4|b|>4,导致矛盾,∴M>2(Ⅲ)解法1:g(x)=|f'(x)|=|﹣(x﹣b)2+b2+c|(1)当|b|>1时,由(Ⅱ)可知f'(b)﹣f'(±1)=b(∓1)2≥0;(2)当|b|≤1时,函数y=f'(x)的对称轴x=b位于区间[﹣1,1]内,此时M=max{g(﹣1),g(1),g(b)}由f'(1)﹣f'(﹣1)=4b,有f'(b)﹣f'(±1)=b(∓1)2≥0\n①若﹣1≤b≤0,则f'(1)≤f'(﹣1)≤f'(b),∴g(﹣1)≤max{g(1),g(b)},于是②若0<b≤1,则f'(﹣1)≤f'(1)≤f'(b),∴g(1)≤maxg(﹣1),g(b)于是综上,对任意的b、c都有而当时,在区间[﹣1,1]上的最小值故M≥k对任意的b、c恒成立的k的最大值为.解法2:g(x)=|f'(x)|=|﹣(x﹣b)2+b2+c|(1)当|b|>1时,由(Ⅱ)可知M>2(2)当|b|≤1y=f'(x)时,函数的对称轴x=b位于区间[﹣1,1]内,此时M=max{g(﹣1),g(1),g(b)}4M≥g(﹣1)+g(1)+2g(h)=|﹣1﹣2b+c|+|﹣1+2b+c|+2|b2+c|≥|﹣1﹣2b+c+(﹣1+2b+c)﹣2(b2+c)|=|2b2+2|≥2,即下同解法1点评:本小题主要考查函数、函数的导数和不等式等基础知识,考查综合运用数学知识进行推理论证的能力和分类类讨论的思想.22.(2009•福建)已知函数f(x)=x3+ax2+bx,且f′(﹣1)=0.(1)试用含a的代数式表示b;(2)求f(x)的单调区间;(3)令a=﹣1,设函数f(x)在x1、x2(x1<x2)处取得极值,记点M(x1,f(x1)),N(x2,f(x2)).证明:线段MN与曲线f(x)存在异于M,N的公共点.考点:导数的几何意义;利用导数研究函数的单调性;函数在某点取得极值的条件。专题:计算题;证明题。分析:(1)据求导法则求出导函数,代入已知条件得关系.(2)令导数为0得两个根,分类讨论两个根大小判断根左右两边导数的符号,得函数单调性.(3)由(2)求出极值点,由两点式求出直线方程,与曲线方程联立判断有无其他公共点.解答:解:解法一:(1)依题意,得f′(x)=x2+2ax+b.由f′(﹣1)=1﹣2a+b=0得b=2a﹣1.(2)由(1)得f(x)=x3+ax2+(2a﹣1)x,故f′(x)=x2+2ax+2a﹣1=(x+1)(x+2a﹣1).令f′(x)=0,则x=﹣1或x=1﹣2a.①当a>1时,1﹣2a<﹣1.当x变化时,f′(x)与f(x)的变化情况如下表:由此得,函数f(x)的单调增区间为(﹣∞,1﹣2a)和(﹣1,+∞),单调减区间为(1﹣2a,﹣1).\n②当a=1时,1﹣2a=﹣1.此时,f′(x)≥0恒成立,且仅在x=﹣1处f′(x)=0,故函数f(x)的单调增区间为R.③当a<1时,1﹣2a>﹣1,同理可得函数f(x)的单调增区间为(﹣∞,﹣1)和(1﹣2a,+∞),单调减区间为(﹣1,1﹣2a).综上所述:当a>1时,函数f(x)的单调增区间为(﹣∞,1﹣2a)和(﹣1,+∞),单调减区间为(1﹣2a,﹣1);当a=1时,函数f(x)的单调增区间为R;当a<1时,函数f(x)的单调增区间为(﹣∞,﹣1)和(1﹣2a,+∞),单调减区间为(﹣1,1﹣2a).(3)当a=﹣1时,得f(x)=x3﹣x2﹣3x.由f′(x)=x2﹣2x﹣3=0,得x1=﹣1,x2=3.由(2)得f(x)的单调增区间为(﹣∞,﹣1)和(3,+∞),单调减区间为(﹣1,3),所以函数f(x)在x1=﹣1,x2=3处取得极值.故M(﹣1,),N(3,﹣9).所以直线MN的方程为y=﹣x﹣1.由得x3﹣3x2﹣x+3=0.令F(x)=x3﹣3x2﹣x+3.易得F(0)=3>0,F(2)=﹣3<0,而F(x)的图象在(0,2)内是一条连续不断的曲线,故F(x)在(0,2)内存在零点x0,这表明线段MN与曲线f(x)有异于M,N的公共点.解法二:(1)同解法一.(2)同解法一.(3)当a=﹣1时,得f(x)=x3﹣x2﹣3x.由f′(x)=x2﹣2x﹣3=0,得x1=﹣1,x2=3.由(2)得f(x)的单调增区间为(﹣∞,﹣1)和(3,+∞),单调减区间为(﹣1,3),所以函数f(x)在x1=﹣1,x2=3处取得极值,故M(﹣1,),N(3,﹣9).所以直线MN的方程为y=﹣x﹣1.由得x3﹣3x2﹣x+3=0.解得x1=﹣1,x2=1,x3=3.∴,,所以线段MN与曲线F(x)有异于M,N的公共点(1,﹣).点评:本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想.23.(2009•福建)已知函数f(x)=x3+ax2+bx,且f′(﹣1)=0.(1)试用含a的代数式表示b,并求f(x)的单调区间;\n(2)令a=﹣1,设函数f(x)在x1,x2(x1<x2)处取得极值,记点M(x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,请仔细观察曲线f(x)在点P处的切线与线段MP的位置变化趋势,并解释以下问题:(Ⅰ)若对任意的t∈(x1,x2),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;(Ⅱ)若存在点Q(n,f(n)),x≤n<m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程).考点:利用导数研究函数的极值;利用导数研究函数的单调性。专题:综合题。分析:(1)欲求:“f(x)的单调区间”,对于三次函数而言,利用导数解决,本题还得对字母a进行讨论;(2)存在性问题,结合观察f(x)的图象,帮助分析问题.解答:解:(1)依题意,得f′(x)=x2+2ax+b,由f′(﹣1)=1﹣2a+b=0得b=2a﹣1从而f(x)=x3+ax2+(2a﹣1)x,故f′(x)=(x+1)(x+2a﹣1)令f′(x)=0,得x=﹣1或x=1﹣2a①当a>1时,1﹣2a<﹣1当x变化时,根据f′(x)与f(x)的变化情况得,函数f(x)的单调增区间为(﹣∞,1﹣2a)和(﹣1,+∞),单调减区间为(1﹣2a,﹣1)②当a=1时,1﹣2a=﹣1,此时有f′(x)≥0恒成立,且仅在x=﹣1处f′(x)=0,故函数f(x)的单调增区间为R、③当a<1时,1﹣2a>﹣1,同理可得,函数f(x)的单调增区间为(﹣∞,﹣1)和(1﹣2a,+∞),单调减区间为(﹣1,1﹣2a)综上:当a>1时,函数f(x)的单调增区间为(﹣∞,1﹣2a)和(﹣1,+∞),单调减区间为(1﹣2a,﹣1);当a=1时,函数f(x)的单调增区间为R;当a<1时,函数f(x)的单调增区间为(﹣∞,﹣1)和(1﹣2a,+∞),单调减区间为(﹣1,1﹣2a)(2)(Ⅰ)由a=﹣1得f(x)=x3﹣x2﹣3x令f′(x)=x2﹣2x﹣3=0得x1=﹣1,x2=3由(1)得f(x)增区间为(﹣∞,﹣1)和(3,+∞),单调减区间为(﹣1,3),所以函数f(x)在处x1=﹣1,x2=3处取得极值,故M(﹣1,),N(3,﹣9)观察f(x)的图象,有如下现象:①当m从﹣1(不含﹣1)变化到3时,线段MP的斜率与曲线f(x)在点P处切线的斜率f(x)之差Kmp﹣f′(m)的值由正连续变为负、②线段MP与曲线是否有异于H,P的公共点与Kmp﹣f′(m)的m正负有着密切的关联;\n③Kmp﹣f′(m)=0对应的位置可能是临界点,故推测:满足Kmp﹣f′(m)的m就是所求的t最小值,下面给出证明并确定的t最小值、曲线f(x)在点P(m,f(m))处的切线斜率f′(m)=m2﹣2m﹣3;线段MP的斜率Kmp=,当Kmp﹣f′(m)=0时,解得m=﹣1或m=2,直线MP的方程为y=(x+),令g(x)=f(x)﹣(x+),当m=2时,g′(x)=x2﹣2x在(﹣1,2)上只有一个零点x=0,可判断f(x)函数在(﹣1,0)上单调递增,在(0,2)上单调递减,又g(﹣1)=g(2)=0,所以g(x)在(﹣1,2)上没有零点,即线段MP与曲线f(x)没有异于M,P的公共点、当m∈(2,3]时,g(0)=﹣>0,g(2)=﹣(m﹣2)2<0,所以存在δ∈(0,2]使得g(δ)=0,即当m∈(2,3]时,MP与曲线f(x)有异于M,P的公共点综上,t的最小值为2.(Ⅱ)类似(1)于中的观察,可得m的取值范围为(1,3].点评:本题综合考查了函数导数的综合应用,本题是函数的综合题,综合考查了利用导数求函数的单调区间,求函数的极值,以及存在性问题,有一定的难度,是一道很好的压轴题.24.(2008•重庆)设函数f(x)=x3+ax2﹣9x﹣1(a<0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求:(Ⅰ)a的值;(Ⅱ)函数f(x)的单调区间.考点:导数的运算;利用导数研究函数的单调性;两条直线平行的判定。专题:计算题。分析:(1)先求出导函数的最小值,最小值与直线12x+y=6的斜率相等建立等式关系,求出a的值即可;(2)先求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,解得的区间就是所求.解答:解:(Ⅰ)因f(x)=x2+ax2﹣9x﹣1所以f'(x)=3x2+2ax﹣9=即当x=时,f'(x)取得最小值.因斜率最小的切线与12x+y=6平行,即该切线的斜率为﹣12,所以解得a=±3,由题设a<0,所以a=﹣3.(Ⅱ)由(Ⅰ)知a=﹣3,因此f(x)=x3﹣3x2﹣9x﹣1,f'(x)=3x2﹣6x﹣9=3(x﹣3(x+1)令f'(x)=0,解得:x1=﹣1,x2=3.当x∈(﹣∞,﹣1)时,f'(x)>0,故f(x)在(﹣∞,﹣1)上为增函数;当x∈(﹣1,3)时,f'(x)<0,故f(x)在(﹣1,3)上为减函数;当x∈(3,+∞)时,f'(x)>0,故f(x)在(3,+∞)上为增函数.由此可见,函数f(x)的单调递增区间为(﹣∞,﹣1)和(3,+∞);\n单调递减区间为(﹣1,3).点评:本小题主要考查导数的几何意义,及运用导数求函数的单调区间、一元二次不等式的解法等基础知识,属于基础题.25.(2008•四川)设函数f(x)=x3﹣x2﹣x+2.(Ⅰ)求f(x)的单调区间和极值;(Ⅱ)若当x∈[﹣1,2]时,﹣3≤af(x)+b≤3,求a﹣b的最大值.考点:利用导数研究函数的单调性;利用导数研究函数的极值;简单线性规划的应用。分析:(1)先对函数f(x)进行求导,令f'(x)>0解出x的范围得到其增区间,同理令f'(x)<0解出x的范围得到减区间;令f'(x)=0解出x的值得到极值点.(2)先求出函数f(x)在区间[﹣1,2]上的最大与最小值,由可得答案.解答:解:(Ⅰ)f'(x)=3x2﹣2x﹣1=(3x+1)(x﹣1).于是,当时,f'(x)<0;时,f'(x)>0.故f(x)在单调减少,在,(1,+∞)单调增加.当时,f(x)取得极大值;当x=1时,f(x)取得极小值f(1)=1.(Ⅱ)根据(Ⅰ)及f(﹣1)=1,f(2)=4,f(x)在[﹣1,2]的最大值为4,最小值为1.因此,当x∈[﹣1,2]时,﹣3≤af(x)+b≤3的充要条件是,即a,b满足约束条件,由线性规划得,a﹣b的最大值为7.点评:本题主要考查函数的单调性与其导函数的正负之间的关系和函数的极值点与导数的关系,即令导数大于0可求函数的增区间,令导数小于0可求函数的减区间,令导数等于0可求其极值点.26.(2008•陕西)设函数f(x)=x3+ax2﹣a2x+1,g(x)=ax2﹣2x+1,其中实数a≠0.(Ⅰ)若a>0,求函数f(x)的单调区间;(Ⅱ)当函数y=f(x)与y=g(x)的图象只有一个公共点且g(x)存在最小值时,记g(x)的最小值为h(a),求h(a)的值域;(Ⅲ)若f(x)与g(x)在区间(a,a+2)内均为增函数,求a的取值范围.考点:利用导数研究函数的单调性。分析:(1)先对函数f(x)进行求导,令导函数大于0可求函数的增区间,令导函数小于0可求函数的减区间.(2)令f(x)=g(x)整理可得x[x2﹣(a2﹣2)]=0,故a2﹣2≤0求出a的范围,再根据g(x)存在最小值必有a>0,最后求出h(a)的值域即可.(3)分别求出函数f(x)与g(x)的单调区间,然后令(a,a+2)为二者单调增区间的子集即可.解答:解:(Ⅰ)∵,又a>0,∴当时,f'(x)>0;\n当时,f'(x)<0,∴f(x)在(﹣∞,﹣a)和内是增函数,在内是减函数.(Ⅱ)由题意知x3+ax2﹣a2x+1=ax2﹣2x+1,即x[x2﹣(a2﹣2)]=0恰有一根(含重根).∴a2﹣2≤0,即≤a≤,又a≠0,∴.当a>0时,g(x)才存在最小值,∴.∵,∴.∴h(a)的值域为.(Ⅲ)当a>0时,f(x)在(﹣∞,﹣a)和内是增函数,g(x)在内是增函数.由题意得,解得a≥1;当a<0时,f(x)在和(﹣a,+∞)内是增函数,g(x)在内是增函数.由题意得,解得a≤﹣3;综上可知,实数a的取值范围为(﹣∞,﹣3]∪[1,+∞).点评:本题主要考查函数的单调性与其导函数的正负情况之间的关系,即当导函数小于0时原函数单调递减,当导函数大于0时原函数单调递增.27.(2008•辽宁)设函数f(x)=ax3+bx2﹣3a2x+1(a,b∈R)在x=x1,x=x2处取得极值,且|x1﹣x2|=2.(Ⅰ)若a=1,求b的值,并求f(x)的单调区间;(Ⅱ)若a>0,求b的取值范围.考点:利用导数研究函数的单调性;利用导数研究函数的极值。分析:(Ⅰ)由题意f(x)=ax3+bx2﹣3a2x+1=x3+bx2﹣3x+1,求出其导数f'(x)=3x2+2bx﹣3,令f′(x)=0,求出极值点x=x1,x=x2利用|x1﹣x2|=2求出b值,并求f(x)的单调区间;(Ⅱ)不知a值,只知a>0,由题意知x1,x2为方程3x2+2bx﹣3a2=0的两根,得=2,求出a的范围,因g(a)=9a2﹣9a3,求出g(a)的单调区间,从而求出a与b的关系,最后根据a的范围确定b的范围.解答:解:f'(x)=3ax2+2bx﹣3a2.①(2分)(Ⅰ)当a=1时,f'(x)=3x2+2bx﹣3;由题意知x1,x2为方程3x2+2bx﹣3=0的两根,所以.由|x1﹣x2|=2,得b=0.(4分)\n从而f(x)=x2﹣3x+1,f'(x)=3x2﹣3=3(x+1)(x﹣1).当x∈(﹣1,1)时,f'(x)<0;当x∈(﹣∞,﹣1)∪(1,+∞)时,f'(x)>0.故f(x)在(﹣1,1)单调递减,在(﹣∞,﹣1),(1,+∞)单调递增.(6分)(Ⅱ)由①式及题意知x1,x2为方程3x2+2bx﹣3a2=0的两根,所以.从而|x1﹣x2|=2⇔b2=9a2(1﹣a),由上式及题设知0<a≤1.(8分)考虑g(a)=9a2﹣9a3,.(10分)故g(a)在单调递增,在单调递减,从而g(a)在(0,1]的极大值为.又g(a)在(0,1]上只有一个极值,所以为g(a)在(0,1]上的最大值,且最小值为g(1)=0.所以,即b的取值范围为.(14分)点评:本小题主要考查函数的导数,单调性、极值,最值等基础知识,考查综合利用导数研究函数的有关性质的能力.28.(2008•湖北)已知函数f(x)=x3+mx2﹣m2x+1(m为常数,且m>0)有极大值9.(Ⅰ)求m的值;(Ⅱ)若斜率为﹣5的直线是曲线y=f(x)的切线,求此直线方程.考点:函数在某点取得极值的条件;利用导数研究函数的极值;利用导数研究曲线上某点切线方程;直线的一般式方程。专题:计算题。分析:(I)求出导函数,求出导函数等于0的两个根,列出x,f′(x),f(x)的变化情况的表格,求出极大值,列出方程求出m的值.(II)将(I)求出的m的值代入导函数,利用曲线在切点处的导数值是切线的斜率,令导数等于﹣5,求出x即切点横坐标,将横坐标代入f(x)求出切点坐标,利用直线方程的点斜式写出切线方程.解答:解:(Ⅰ)f’(x)=3x2+2mx﹣m2=(x+m)(3x﹣m)=0,则x=﹣m或x=m,当x变化时,f’(x)与f(x)的变化情况如下表:从而可知,当x=﹣m时,函数f(x)取得极大值9,即f(﹣m)=﹣m3+m3+m3+1=9,∴m=2.(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2﹣4x+1,依题意知f’(x)=3x2+4x﹣4=﹣5,∴x=﹣1或x=﹣.又f(﹣1)=6,f(﹣)=,所以切线方程为y﹣6=﹣5(x+1),或y﹣=﹣5(x+),即5x+y﹣1=0,或135x+27y﹣23=0.\n点评:本题考查利用导数求函数的极值的步骤:求出导数;令导数为0求出根;列出表格判断根左右两边导函数的符号;求出极值.考查导数的几何意义:导数在切点处的值是曲线的切线斜率.29.(2008•福建)已知函数f(x)=x3+mx2+nx﹣2的图象过点(﹣1,﹣6),且函数g(x)=f′(x)+6x的图象关于y轴对称.(Ⅰ)求m、n的值及函数y=f(x)的单调区间;(Ⅱ)若a>0,求函数y=f(x)在区间(a﹣1,a+1)内的极值.考点:利用导数研究函数的极值;利用导数研究函数的单调性。专题:计算题;分类讨论。分析:(Ⅰ)利用条件的到两个关于m、n的方程,求出m、n的值,再找函数y=f(x)的导函数大于0和小于0对应的区间即可.(Ⅱ)利用(Ⅰ)的结论,分情况讨论区间(a﹣1,a+1)和单调区间的位置关系再得结论.解答:解:(Ⅰ)由函数f(x)图象过点(﹣1,﹣6),得m﹣n=﹣3,①由f(x)=x3+mx2+nx﹣2,得f′(x)=3x2+2mx+n,则g(x)=f′(x)+6x=3x2+(2m+6)x+n;而g(x)图象关于y轴对称,所以﹣=0,所以m=﹣3,代入①得n=0.于是f′(x)=3x2﹣6x=3x(x﹣2).由f′(x)>得x>2或x<0,故f(x)的单调递增区间是(﹣∞,0),(2,+∞);由f′(x)<0得0<x<2,故f(x)的单调递减区间是(0,2).(Ⅱ)由(Ⅰ)得f′(x)=3x(x﹣2),令f′(x)=0得x=0或x=2.当x变化时,f′(x)、f(x)的变化情况如下表:由此可得:当0<a<1时,f(x)在(a﹣1,a+1)内有极大值f(O)=﹣2,无极小值;当a=1时,f(x)在(a﹣1,a+1)内无极值;当1<a<3时,f(x)在(a﹣1,a+1)内有极小值f(2)=﹣6,无极大值;当a≥3时,f(x)在(a﹣1,a+1)内无极值.综上得:当0<a<1时,f(x)有极大值﹣2,无极小值,当1<a<3时,f(x)有极小值﹣6,无极大值;当a=1或a≥3时,f(x)无极值.点评:本小题主要考查函数的奇偶性、单调性、极值、导数、不等式等基础知识,考查运用导数研究函数性质的方法,以及分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.30.(2008•北京)已知函数f(x)=x3+ax2+3bx+c(b≠0),且g(x)=f(x)﹣2是奇函数.(Ⅰ)求a,c的值;(Ⅱ)求函数f(x)的单调区间.考点:函数的单调性与导数的关系;函数奇偶性的性质。分析:(1)先利用奇函数的定义g(﹣x)=﹣g(x)求出a,c的值;(2)求导数令其为0,判断根左右两边的符号,求出函数的单调性.注意对参数的讨论.\n解答:解:(Ⅰ)因为函数g(x)=f(x)﹣2为奇函数,所以,对任意的x∈R,都有g(﹣x)=﹣g(x),即f(﹣x)﹣2=﹣f(x)+2.又f(x)=x3+ax2+3bx+c所以﹣x3+ax2﹣3bx+c﹣2=﹣x3﹣ax2﹣3bx﹣c+2.所以解得a=0,c=2.(Ⅱ)由(Ⅰ)得f(x)=x3+3bx+2.所以f'(x)=3x2+3b(b≠0).当b<0时,由f'(x)=0得.x变化时,f'(x)的变化情况如下:,时f′(x)>0,时f′(x)<0,时f′(x)>0所以,当b<0时,函数f(x)在上单调递增,在上单调递减,在上单调递增.当b>0时,f'(x)>0,所以函数f(x)在(﹣∞,+∞)上单调递增.点评:本题考查函数的奇偶性,利用导数求函数的单调区间的方法.注意:含参数的函数求单调性时一般需要讨论.