- 166.76 KB
- 2022-07-20 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时作业(十)一、选择题1.函数y=ln的图象为( )答案 A解析 易知2x-3≠0,即x≠,排除C、D项.当x>时,函数为减函数,当x<时,函数为增函数,所以选A.2.下列函数的图像中,经过平移或翻折后不能与函数y=log2x的图象重合的函数是( )A.y=2x B.y=logxC.y=D.y=log2+1答案 C3.若函数f(x)在(4,+∞)上为减函数,且对任意的x∈R,有f(4+x)=f(4-x),则( )A.f(2)>f(3) B.f(2)>f(5)C.f(3)>f(5)D.f(3)>f(6)答案 D解析 依题意,由f(x+4)=f(4-x)知,f(x)的对称轴为x=4,所以f(2)=f(6),f(3)=f(5),由于f(x)在(4,+∞)上是减函数,所以f(3)=f(5)>f(6),选D.4.(·安徽)设ab时,y>0;当x≤b时,y≤0,故选C.5.已知下图①的图象对应的函数为y=f(x),则图②的图象对应的函数在下列给出的四式中,只可能是( )A.y=f(|x|)B.y=|f(x)|C.y=f(-|x|)D.y=-f(|x|)\n答案 C6.(·江南十校联考)函数f(x)=的图象是( )答案 C解析 本题通过函数图象考查函数的性质.f(x)==.当x≥0时,x增大,减小,所以f(x)当x≥0时为减函数;当x<0时,x增大,增大,所以f(x)当x<0时为增函数.本题也可以根据f(-x)===f(x)得f(x)为偶函数,图象关于y轴对称,选C.7.已知函数f(x)的定义域为[a,b],函数y=f(x)的图象如下图所示,则函数f(|x|)的图象大致是( )答案 B8.若对任意x∈R,不等式|x|≥ax恒成立,则实数a的取值范围是( )A.a<-1B.|a|≤1C.|a|<1D.a≥1答案 B9.f(x)定义域为R,对任意x∈R,满足f(x)=f(4-x)且当x∈[2,+∞)时,f(x)为减函数,则( )A.f(0)1).答案 \n解析 (1)的变换是:y=ax→y=a|x|→y=a|x-1|,而不是:y=ax→y=ax-1→y=a|x-1|,这需要理解好y=f(x)→y=f(|x|)的交换.(2)题同(1),(3)与(2)是不同的变换,注意区别.1.已知函数f(x)=|x2-4x+3|(1)求函数f(x)的单调区间,并指出其增减性;(2)若关于x的方程f(x)-a=x至少有三个不相等的实数根,求实数a的取值范围.解析 f(x)=作出图象如图所示.(1)递增区间为[1,2],[3,+∞),递减区间为(-∞,1],[2,3].(2)原方程变形为|x2-4x+3|=x+a,于是,设y=x+a,在同一坐标系下再作出y=x+a的图象.如图.则当直线y=x+a过点(1,0)时a=-1;当直线y=x+a与抛物线y=-x2+4x-3相切时,由⇒x2-3x+a+3=0.由Δ=9-4(3+a)=0.得a=-.由图象知当a∈[-1,-]时方程至少有三个不等实根.