• 56.00 KB
  • 2022-07-20 发布

高考必胜高考数学必胜秘诀在哪――概念、方法、题型、

  • 21页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
高考必胜高考数学必胜秘诀在哪――概念、方法、题型、  高考数学必胜秘诀在哪?  ――概念、方法、题型、易误点及应试技巧总结  基本概念、公式及方法是数学解题的基础工具和基本技能,为此作为临考前的高三学生,务必首先要掌握高中数学中的概念、公式及基本解题方法,其次要熟悉一些基本题型,明确解题中的易误点,还应了解一些常用结论,最后还要掌握一些的应试技巧。本资料对高中数学所涉及到的概念、公式、常见题型、常用方法和结论及解题中的易误点,按章节进行了系统的整理,最后阐述了考试中的一些常用技巧,相信通过对本资料的认真研读,一定能大幅度地提升高考数学成绩。    一、集合与简易逻辑  1.集合元素具有确定性、无序性和互异性.在求有关集合问题时,尤其要注意元素的互异性,如(1)设P、Q为两个非空实数集合,定义集合P+Q=,若,,则P+Q中元素的有________个。(答:8)(2)设,,,那么点的充要条件是________(答:);(3)非空集合,且满足"若,则",这样的共有_____个(答:7)  2.遇到时,你是否注意到"极端"情况:或;同样当时,你是否忘记的情形?要注意到是任何集合的子集,是任何非空集合的真子集。如集合,,且,则实数=______.(答:)  3.对于含有个元素的有限集合,其子集、真子集、非空子集、非空真子集的个数依次为如满足集合M有______个。 (答:7)  4.集合的运算性质: ⑴; ⑵;⑶;⑷;⑸;⑹;⑺.如设全集,若,,,则A=_____,B=___.(答:,)  5.研究集合问题,一定要理解集合的意义――抓住集合的代表元素。如:-函数的定义域;-函数的值域;-函数图象上的点集,如(1)设集合,集合N=,则___(答:);(2)设集合,,,则_____(答:)   6.\n数轴和韦恩图是进行交、并、补运算的有力工具,在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题。如已知函数在区间上至少存在一个实数,使,求实数的取值范围。 (答:)  7.复合命题真假的判断。"或命题"的真假特点是"一真即真,要假全假";"且命题"的真假特点是"一假即假,要真全真";"非命题"的真假特点是"真假相反"。如在下列说法中:⑴"且"为真是"或"为真的充分不必要条件;⑵"且"为假是"或"为真的充分不必要条件;⑶"或"为真是"非"为假的必要不充分条件;⑷"非"为真是"且"为假的必要不充分条件。其中正确的是__________(答:⑴⑶)  8.四种命题及其相互关系。若原命题是"若p则q",则逆命题为"若q则p";否命题为"若﹁p则﹁q";逆否命题  9.充要条件。关键是分清条件和结论(划主谓宾),由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。从集合角度解释,若,则A是B的充分条件;若,则A是B的必要条件;若A=B,则A是B的充要条件。如(1)给出下列命题:①实数是直线与平行的充要条件;②若是成立的充要条件;③已知,"若,则或"的逆否命题是"若或则";④"若和都是偶数,则是偶数"的否命题是假命题。其中正确命题的序号是_______(答:①④);(2)设命题p:;命题q:。若┐p是┐q的必要而不充分的条件,则实数a的取值范围是(答:)  10.一元一次不等式的解法:通过去分母、去括号、移项、合并同类项等步骤化为的形式,若,则;若,则;若,则当时,;当时,。如已知关于的不等式的解集为,则关于的不等式的解集为_______(答:)  11.一元二次不等式的解集(联系图象)。尤其当和时的解集你会正确表示吗?设,是方程的两实根,且,则其解集如下表:  \n或或    R    R  R      如解关于的不等式:。(答:当时,;当时,或;当时,;当时,;当时,)  12.对于方程有实数解的问题。首先要讨论最高次项系数是否为0,其次若,则一定有。对于多项式方程、不等式、函数的最高次项中含有参数时,你是否注意到同样的情形?如:(1)对一切恒成立,则的取值范围是_______(答:);(2)关于的方程有解的条件是什么?(答:,其中为的值域),特别地,若在内有两个不等的实根满足等式,则实数的范围是_______.(答:)  13.一元二次方程根的分布理论。方程在上有两根、在上有两根、在和上各有一根的充要条件分别是什么?\n(、、)。根的分布理论成立的前提是开区间,若在闭区间讨论方程有实数解的情况,可先利用在  14.二次方程、二次不等式、二次函数间的联系你了解了吗?二次方程的两个根即为二次不等式的解集的端点值,也是二次函数的图象与轴的交点的横坐标。如(1)不等式的解集是,则=__________(答:);(2)若关于的不等式的解集为,其中,则关于的不等式的解集为________(答:);(3)不等式对恒成立,则实数的取值范围是_______(答:)。  高考数学必胜秘诀在哪?  ――概念、方法、题型、易误点及应试技巧总结  二、函 数  1.映射:AB的概念。在理解映射概念时要注意:⑴A中元素必须都有象且唯一;⑵B中元素不一定都有原象,但原象不一定唯一。如(1)设是集合到的映射,下列说法正确的是 A、中每一个元素在中必有象B、中每一个元素在中必有原象  C、中每一个元素在中的原象是唯一的 D、是中所在元素的象的集合(答:A);(2)点在映射的作用下的象是,则在作用下点的原象为点________(答:(2,-1));(3)若,,,则到的映射有个,到的映射有个,到的函数有个(答:81,64,81);(4)设集合,映射满足条件"对任意的,是奇数",这样的映射有____个(答:12);(5)设是集合A到集合B的映射,若B={1,2},则一定是_____(答:或{1}).  2.函数:AB是特殊的映射。特殊在定义域A和值域B都是非空数集!据此可知函数图像与轴的垂线至多有一个公共点,但与轴垂线的公共点可能没有,也可能有任意个。如(1)已知函数,,那么集合中所含元素的个数有个(答:0或1);(2)若函数的定义域、值域都是闭区间,则=(答:2)  3.同一函数的概念。构成函数的三要素是定义域,值域和对应法则。而值域可由定义域和对应法则唯一确定,因此当两个函数的定义域和对应法则相同时,它们一定为同一函数。如若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为"天一函数",那么解析式为,值域为{4,1}的"天一函数"共有______个(答:9)  4.求函数定义域的常用方法(在研究函数问题时要树立定义域优先的原则):  (1)根据解析式要求如偶次根式的被开方大于零,分母不能为零,对数中且,三角形中,\n最大角,最小角等。如(1)函数的定义域是____(答:);(2)若函数的定义域为R,则_______(答:);(3)函数的定义域是,,则函数的定义域是__________(答:);(4)设函数,①若的定义域是R  (2)根据实际问题的要求确定自变量的范围。  (3)复合函数的定义域:若已知的定义域为,其复合函数的定义域由不等式解出即可;若已知的定义域为,求的定义域,相当于当时,求的值域(即的定义域)。如(1)若函数的定义域为,则的定义域为__________(答:);(2)若函数的定义域为,则函数的定义域为________(答:[1,5]).  5.求函数值域(最值)的方法:  (1)配方法――二次函数(二次函数在给出区间上的最值有两类:一是求闭区间上的最值;二是求区间定(动),对称轴动(定)的最值问题。求二次函数的最值问题,勿忘数形结合,注意"两看":一看开口方向;二看对称轴与所给区间的相对位置关系),如(1)求函数的值域(答:[4,8]);(2)当时,函数在时取得最大值,则的取值范围是___(答:);(3)已知的图象过点(2,1),则的值域为______(答:[2,5])  (2)换元法――通过换元把一个较复杂的函数变为简单易求值域的函数,其函数特征是函数解析式含有根式或三角函数公式模型,如(1)的值域为_____(答:);(2)的值域为_____(答:)(令,。运用换元法时,要特别要注意新元的范围);(3)的值域为____(答:);(4)的值域为____(答:);  (3)函数有界性法――直接求函数的值域困难时,可以利用已学过函数的有界性,来确定所求函数的值域,最常用的就是三角函数的有界性,如求函数,,的值域(答:、(0,1)、);  (4)单调性法――利用一次函数,反比例函数,指数函数,对数函数等函数的单调性,如求,,的值域为______(答:、、);\n  (5)数形结合法――函数解析式具有明显的某种几何意义,如两点的距离、直线斜率、等等,如(1)已知点在圆上,求及的取值范围(答:、);(2)求函数的值域(答:);(3)求函数及的值域(答:、)注意:求两点距离之和时,要将函数式变形,使两定点在轴的两侧,而求两点距离之差时,则要使两定点在轴的同侧。  (6)判别式法――对分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其它方法进行求解,不必拘泥在判别式法上,也可先通过部分分式后,再利用均值不等式:  ①型,可直接用不等式性质,如求的值域(答:)  ②型,先化简,再用均值不等式,如(1)求的值域(答:);(2)求函数的值域(答:)  ③型,通常用判别式法;如已知函数的定义域为R,值域为[0,2],求常数的值  ④型,可用判别式法或均值不等式法,如求的值域(答:)  (7)不等式法――利用基本不等式求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。如设成等差数列,成等比数列,则的取值范围是____________.(答:)。  (8)导数法――一般适用于高次多项式函数,如求函数,的最小值。(答:-48)  提醒:(1)求函数的定义域、值域时,你按要求写成集合形式了吗?(2)函数的最值与值域之间有何关系?  6.分段函数的概念。分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。在求分段函数的值时,一定首先要判断属于定义域的哪个子集,然后再代相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集。如(1)设函数,则使得的自变量的取值范围是__________(答:);(2)已知,则不等式的解集是________(答:)  7.求函数解析式的常用方法:  (1)待定系数法――已知所求函数的类型(二次函数的表达形式有三种:一般式:;顶点式:;零点式:,要会根据已知条件的特点,灵活地选用二次函数的表达形式)。如已知为二次函数,且,且f(0)=1,图象在x轴上截得的线段长为2,求的解析式。(答:)\n  (2)代换(配凑)法――已知形如的表达式,求的表达式。如(1)已知求的解析式(答:);(2)若,则函数=_____(答:);(3)若函数是定义在R上的奇函数,且当时,,那么当时,=________(答:).这里需值得注意的是所求解析式的定义域的等价性,即的定义域应是的值域。  (3)方程的思想――已知条件是含有及另外一个函数的等式,可抓住等式的特征对等式的进行赋值,从而得到关于及另外一个函数的方程组。如(1)已知,求的解析式(答:);(2)已知是奇函数,是偶函数,且+=,则=__(答:)。  8.反函数:  (1)存在反函数的条件是对于原来函数值域中的任一个值,都有唯一的值与之对应,故单调函数一定存在反函数,但反之不成立;偶函数只有有反函数;周期函数一定不存在反函数。如函数在区间[1,2]上存在反函数的充要条件是A、 B、  C、  D、 (答:D)  (2)求反函数的步骤:①反求;②互换、;③注明反函数的定义域(原来函数的值域)。注意函数的反函数不是,而是。如设.求的反函数(答:).  (3)反函数的性质:  ①反函数的定义域是原来函数的值  ②函数的图象与其反函数的图象关于直线对称,注意函数的图象与的图象相同。如(1)已知函数的图象过点(1,1),那么的反函数的图象一定经过点_____(答:(1,3));(2)已知函数,若函数与的图象关于直线对称,求的值(答:);  ③。如(1)已知函数,则方程的解______(答:1);(2)设函数f(x)的图象关于点(1,2)对称,且存在反函数,f(4)=0,则= (答:-2)  ④互为反函数的两个函数具有相同的单调性和奇函数性。如已知是上的增函数,点在它的图象上,是它的反函数,那么不等式的解集为________(答:(2,8));  ⑤设的定义域为A,值域为B,则有,,但。\n  9.函数的奇偶性。  (1)具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称。如若函数,为奇函数,其中,则的值是(答:0);  (2)确定函数奇偶性的常用方法(若所给函数的解析式较为复杂,应先化简,再判断其奇偶性):  ①定义法:如判断函数的奇偶性____(答:奇函数)。  ②利用函数奇偶性定义的等价形式:或()。如判断的奇偶性___.(答:偶函数)  ③图像法:奇函数的图象关于原点对称;偶函数的图象关于轴对称。  (3)函数奇偶性的性质:  ①奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.  ②如果奇函数有反函数,那么其反函数一定还是奇函数.  ③若为偶函数,则.如若定义在R上的偶函数在上是减函数,且=2,则不等式的解集为______.(答:)  ④若奇函数定义域中含有0,则必有.故是为奇函数的既不充分也不必要条件。如若为奇函数,则实数=____(答:1).  ⑤定义在关于原点对称区间上的任意一个函数,都可表示成"一个奇函数与一个偶函数的和(或差)"。如设是定义域为R的任一函数,,。①判断与的奇偶性;②若将函数,表示成一个奇函数和一个偶函数之和,则=____(答:①为偶函数,为奇函数;②=)  ⑥复合函数的奇偶性特点是:"内偶则偶,内奇同外".  ⑦既奇又偶函数有无穷多个(,定义域是关于原点对称的任意一个数集).  10.函数的单调性。  (1)确定函数的单调性或单调区间的常用方法:\n  ①在解答题中常用:定义法(取值  ②在选择填空题中还可用数形结合法、特殊值法等等,特别要注意型函数的图象和单调性在解题中的运用:增区间为,减区间为.如(1)若函数在区间(-∞,4]上是减函数,那么实数的取值范围是______(答:));(2)已知函数在区间上为增函数,则实数的取值范围_____(答:);(3)若函数的值域为R,则实数的取值范围是______(答:且));  ③复合函数法:复合函数单调性的特点是同增异减,如函数的单调递增区间是________(答:(1,2))。  (2)特别提醒:求单调区间时,一是勿忘定义域,如若函数在区间上为减函数,求的取值范围(答:);二是在多个单调区间之间不一定能添加符号""和"或";三是单调区间应该用区间表示,不能用集合或不等式表示.  (3)你注意到函数单调性与奇偶性的逆用了吗?(①比较大小;②解不等式;③求参数范围).如已知奇函数是定义在上的减函数,若,求实数的取值范围。(答:)  11.常见的图象变换  ①函数的图象是把函数的图象沿轴向左平移个单位得到的。如设的图像与的图像关于直线对称,的图像由的图像向右平移1个单位得到,则为__________(答:)  ②函数(的图象是把函数的图象沿轴向右平移个单位得到的。如(1)若,则函数的最小值为____(答:2);(2)要得到的图像,只需作关于_____轴对称的图像,再向____平移3个单位而得到(答:;右);(3)函数的图象与轴的交点个数有____个(答:2)  ③函数+的图象是把函数助图象沿轴向上平移个单位得到的;  ④函数+的图象是把函数助图象沿轴向下平移个单位得到的;如将函数的图象向右平移2个单位后又向下平移2个单位,所得图象如果与原图象关于直线对称,那么  (答:C)\n  ⑤函数的图象是把函数的图象沿轴伸缩为原来的得到的。如(1)将函数的图像上所有点的横坐标变为原来的(纵坐标不变),再将此图像沿轴方向向左平移2个单位,所得图像对应的函数为_____(答:);(2)如若函数是偶函数,则函数的对称轴方程是_______(答:).  ⑥函数的图象是把函数的图象沿轴伸缩为原来的倍得到的.  12.函数的对称性。  ①满足条件的函数的图象关于直线对称。如已知二次函数满足条件且方程有等根,则=_____(答:);  ②点关于轴的对称点为;函数关于轴的对称曲线方程为;  ③点关于轴的  ④点关于原点的对称点为;函数关于原点的对称曲线方程为;  ⑤点关于直线的对称点为;曲线关于直线的对称曲线的方程为。特别地,点关于直线的对称点为;曲线关于直线的对称曲线的方程为;点关于直线的对称点为;曲线关于直线的对称曲线的方程为。如己知函数,若的图像是,它关于直线对称图像是关于原点对称的图像为对应的函数解析式是___________(答:);  ⑥曲线关于点的对称曲线的方程为。如若函数与的图象关于点(-2,3)对称,则=______(答:)  ⑦形如的图像是双曲线,其两渐近线分别直线(由分母为零确定)和直线(由分子、分母中的系数确定),对称中心是点。如已知函数图象与关于直线对称,且图象关于点(2,-3)对称,则a的值为______(答:2)  ⑧的图象先保留原来在轴上方的图象,作出轴下方的图象关于轴的对称图形,然后擦去轴下方的图象得到;的图象先保留在轴右方的图象,擦去轴左方的图象,然后作出轴右方的图象关于轴的对称图形得到。如(1)作出函数及的图象;(2)若函数是定义在R上的奇函数,则函数的图象关于____对称(答:轴)    提醒:(1)从结论②③④⑤⑥可看出,求对称曲线方程的问题,实质上是利用代入法转化为求点的对称问题;(2)证明函数图像的对称性,即证明图像上任一点关于对称中心(对称轴)的对称点仍在图像上;(3)证明图像与的对称性,需证两方面:①证明上任意点关于对称中心(对称轴)的对称点仍在上;②证明上任意点关于对称中心(对称轴)的对称点仍在上。如(1)已知函数。求证:函数的图像关于点成中心对称图形;(2)设曲线C的方程是,将C沿轴,\n轴正方向分别平行移动单位长度后得曲线。①写出曲线的方程(答:);②证明曲线C与关于点对称。  13.函数的周期性。  (1)类比"三角函数图像"得:  ①若图像有两条对称轴,则必是周期函数,且一周期为;  ②若图像有两个对称中心,则是周期函数,且一周期为;  ③如果函数的图像有一个对称中心和一条对称轴,则函数必是周期函数,且一周期为;  如已知定义在上的函数是以2为周期的奇函数,则方程在上至少有__________个实数根(答:5)  (2)由周期函数的定义"函数满足,则是周期为的周期函数"得:  ①函数满足,则是周期为2的周期函数;  ②若恒成立,则;  ③若恒成立,则.  如(1)设是上的奇函数,,当时,,则等于_____(答:);(2)定义在上的偶函数满足,且在上是减函数,若  14.指数式、对数式:  ,,,,,,,,,,,。如(1)的值为________(答:8);(2)的值为________(答:)  15.指数、对数值的大小比较:(1)化同底后利用函数的单调性;(2)作差或作商法;(3)利用中间量(0或1);(4)化同指数(或同真数)后利用图象比较。  16.函数的应用。(1)求解数学应用题的一般步骤:①审题――认真读题,确切理解题意,明确问题的实际背景,寻找各量之间的内存联系;②建模――通过抽象概括,将实际问题转化为相应的数学问题,别忘了注上符合实际意义的定义域;③解模――求解所得的数学问题;④回归――将所解得的数学结果,回归到实际问题中去。(2)常见的函数模型有:①建立一次函数或二次函数模型;②建立分段函数模型;③建立指数函数模型;④建立型。  17.抽象函数:抽象函数通常是指没有给出函数的具体的解析式,只给出了其它一些条件(如函数的定义域、单调性、奇偶性、解析递推式等)的函数问题。求解抽象函数问题的常用方法是:\n  (1)借鉴模型函数进行类比探究。几类常见的抽象函数:  ①正比例函数型:---------------;  ②幂函数型:--------------,;  ③指数函数型:------------,;  ④对数函数型:-----,;  ⑤三角函数型:-----。如已知是定义在R上的奇函数,且为周期函数,若它的最小正周期为T,则____(答:0)  (2)利用函数的性质(如奇偶性、单调性、周期性、对称性等)进行演绎探究:如(1)设函数表示除以3的余数,则对任意的,都有 A、B、C、D、(答:A);(2)设是定义在实数集R上的函数,且满足,如果,,求(答:1);(3)如设是定义在上的奇函数,且,证明:直线是函数图象的一条对称轴;(4)已知定义域为的函数满足,且当时,单调递增。如果,且,则的值的符号是____(答:负数)  (3)利用一些方法(如赋值法(令=0或1,求出或、令或等)、递推法、反证法等)进行逻辑探究。如(1)若,满足,则的奇偶性是______(答:奇函数);(2)若,满足,则的奇偶性是______(答:偶函数);(3)已知是定义在上的奇函数,当时,的图像如右图所示,那么不等式的解集是_____________(答:);(4)设的定义域为,对任意,都有,且时,,又,①求证为减函数;②解不等式.(答:).  高考数学必胜秘诀在哪?   三、数  列  1、数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,...,n})的特殊函数,数列的通项公式也就是相应函数的解析式。如(1)已知,则在数列的最大项为__(答:);(2)数列的通项为,其中均为正数,则与的大小关系为___(答:);(3)已知数列中,,且是递增数列,求实数的取值范围(答:);(4)一给定函数的图象在下列图中,并且对任意,由关系式得到的数列满足,则该函数的图象是()(答:A)\n      ABCD  2.等差数列的有关概念:  (1)等差数列的判断方法:定义法或。如设是等差数列,求证:以bn=为通项公式的数列为等差数列。  (2)等差数列的通项:或。如(1)等差数列中,,,则通项    (答:);(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:)  (3)等差数列的前和:,。如(1)数列中,,,前n项和,则=_,=_(答:,);(2)已知数列的前n项和,求数列的前项和(答:).  (4)等差中项:若成等差数列,则A叫做与的等差中项,且。  提醒:(1)等差数列的通项公式及前和公式中,涉及到5个元素:、、、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为...,...(公差为);偶数个数成等差,可设为...,,...(公差为2)  3.等差数列的性质:  (1)当公差时,等差数列的通项公式是关于的一次函数,且斜率为公差;前和是关于的二次函数且常数项为0.  (2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。\n  (3)当时,则有,特别地,当时,则有.如(1)等差数列中,,则=____(答:27);(2)在等差数列中,,且,是其前项和,则A、都小于0,都大于0  B、都小于0,都大于0  C、都小于0,都大于0  D、都小于0,都大于0 (答:B)  (4)若、是等差数列,则、(、是非零常数)、、,...也成等差数列,而成等比数列;若是等比数列,且,则是等差数列.如等差数列的前n项和为25,前2n项和为100,则它的前3n和为。(答:225)  (5)在等差数列中,当项数为偶数时,;项数为奇数时,,(这里即);。如(1)在等差数列中,S11=22,则=______(答:2);(2)项数为奇数的等差数列中,奇数项和为80,偶  (6)若等差数列、的前和分别为、,且,则.如设{}与{}是两个等差数列,它们的前项和分别为和,若,那么___________(答:)  (7)"首正"的递减等差数列中,前项和的最大值是所有非负项之和;"首负"的递增等差数列中,前项和的最小值是所有非正项之和。法一:由不等式组确定出前多少项为非负(或非正);法二:因等差数列前项是关于的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性。上述两种方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?如(1)等差数列中,,,问此数列前多少项和最大?并求此最大值。(答:前13项和最大,最大值为169);(2)若是等差数列,首项,,则使前n项和成立的最大正整数n是(答:4006)  (8)如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.注意:公共项仅是公共的项,其项数不一定相同,即研究.  4.等比数列的有关概念:  (1)等比数列的判断方法:定义法,其中或。如(1)一个等比数列{}共有项,奇数项之积为100,偶数项之积为120,则为____(答:);(2)数列中,=4+1()且=1,若,求证:数列{}是等比数列。  (2)等比数列的通项:或。如设等比数列中,,,前项和=126,求和公比.(答:,或2)  (3)等比数列的前和:当时,;当时,\n。如(1)等比数列中,=2,S99=77,求(答:44);(2)的值为__________(答:2046);  特别提醒:等比数列前项和公式有两种形式,为此在求等比数列前项和时,首先要判断公比是否为1,再由的情况选择求和公式的形式,当不能判断公比是否为1时,要对分和两种情形讨论求解。  (4)等比中项:若成等比数列,那么A叫做与的等比中项。提醒:不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个。如已知两个正数的等差中项为A,等比中项为B,则A与B的大小关系为______(答:A>B)  提醒:(1)等比数列的通项公式及前和公式中,涉及到5个元素:、、、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2;(2)为减少运算量,要注意设元的技巧,如奇数个数成等比,可设为...,...(公比为);但偶数个数成等比时,不能设为...,...,因公比不一定为正数,只有公比为正时才可如此设,且公比为。如有四个数,其中前三个数成等差数列,后三个成等比  5.等比数列的性质:  (1)当时,则有,特别地,当时,则有.如(1)在等比数列中,,公比q是整数,则=___(答:512);(2)各项均为正数的等比数列中,若,则(答:10)。  (2)若是等比数列,则、、成等比数列;若成等比数列,则、成等比数列;若是等比数列,且公比,则数列,...也是等比数列。当,且为偶数时,数列,...是常数数列0,它不是等比数列.如(1)已知且,设数列满足,且,则     .(答:);(2)在等比数列中,为其前n项和,若,则的值为______(答:40)  (3)若,则为递增数列;若,则为递减数列;若,则为递减数列;若,则为递增数列;若,则为摆动数列;若,则为常数列.  (4)当时,,这里,但,这是等比数列前项和公式的一个特征,据此很容易根据,判断数列是否为等比数列。如若是等比数列,且,则=(答:-1)  (5).如设等比数列的公比为,前项和为,若成等差数列,则的值为_____(答:-2)\n  (6)在等比数列中,当项数为偶数时,;项数为奇数时,.  (7)如果数列既成等差数列又成等比数列,那么数列是非零常数数列,故常数数列仅是此数列既成等差数列又成等比数列的必要非充分条件。如设数列的前项和为(),关于数列有下列三个命题:①若,则既是等差数列又是等比数列;②若,则是等差数列;③若,则是等比数列。这些命题中,真命题的序号是(答:②③)  6.数列的通项的求法:  ⑴公式法:①等差数列通项公式;②等比数列通项公式。如已知数列试写出其一个通项公式:__________(答:)  ⑵已知(即)求,用作差法:。如①已知的前项和满足,求(答:);②数列满足,求(答:)  ⑶已知求,用作商法:。如数列中,对所有的都有,则______(答:)  ⑷若求用累加法:。如已知数列满足,,则=________(答:)  ⑸已知求,用累乘法:。如已知数列中,,前项和,若,求(答:)  ⑹已知递推关系求,用构造法(构造等差、等比数列)。特别地,(1)形如、(为常数)的递推数列都可以用待定系数法转化为公比为的等比数列后,再求。如①已知,求(答:);②已知,求(答:);(2)形如的递推数列都可以用倒数法求通项。如①已知,求(答:);②已知数列满足=1,,求(答:)  注意:(1)用求数列的通项公式时,你注意到此等式成立的条件了吗?(,当时,);(2)一般地当  7.数列求和的常用方法:  (1)公式法:①等差数列求和公式;②等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;③常用公式:,,.如(1)等比数列的前项和Sn=2n-1,则=_____(答:);(2)计算机是将信息转换成二进制数进行处理的。二进制即"逢2进1",如表示二进制数,将它转换成十进制形式是,那么将二进制转换成十进制数是_______(答:)  (2)分组求和法:在直接运用公式法求和有困难时,常将"和式"中"同类项"先合并在一起,再运用公式法求和.如求:(答:)\n  (3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法).如①求证:;②已知,则=______(答:)  (4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前和公式的推导方法).如(1)设为等比数列,,已知,,①求数列的首项和公比;②求数列的通项公式.(答:①,;②);(2)设函数,数列满足:,①求证:数列是等比数列;②令,求函数在点处的导数,并比较与的大小。(答:①略;②,当时,=;当时,<;当时,>)  (5)裂项相消法:如果数列的通项可"分裂成两项差"的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:  ①;②; ③,;  ④;⑤;  ⑥.  如(1)求和:(答:);(2)在数列中,,且Sn=9,则n=_____(答:99);  (6)通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。如①求数列1×4,2×5,3×6,...,,...前项和= (答:);②求和:(答:)  8."分期付款"、"森林木材"型应用问题  (1)这类应用题一般可转化为等差数列或等比数列问题.但在求解过程中,务必"卡手指",细心计算"年限".对于"森林木材"既增长又砍伐的问题,则常选用"统一法"统一到"最后"解决.  (2)利率问题:①单利问题:如零存整取储蓄(单利)本利和计算模型:若每期存入本金元,每期利率为,则期后本利和为:\n(等差数列问题);②复利问题:按揭贷款的分期等额还款(复利)模型:若贷款(向银行借款)元,采用分期等额还款方  高考数学必胜秘诀在哪?  ――概念、方法、题型、易误点及应试技巧总结  四、三角函数  1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。  2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。  3.终边相同的角的表示: (1)终边与终边相同(的终边在终边所在射线上),注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角的终边相同,且绝对值最小的角的度数是___,合___弧度。(答:;) (2)终边与终边共线(的终边在终边所在直线上). (3)终边与终边关于轴对称. (4)终边与终边关于轴对称. (5)终边与终边关于原点对称. (6)终边在轴上的角可表示为:;终边在轴上的角可表示为:;终边在坐标轴上的角可表示为:.如的终边与的终边关于直线对称,则=____________。(答:)  4、与的终边关系:由"两等分各象限、一二三四"确定.如若是第二象限角,则是第_____象限角(答:一、三)  5.弧长公式:,扇形面积公式:,1弧度(1rad).如已知扇形AOB的周长是6cm,该扇形的中心角是1弧度,求该扇形的面积。(答:2)\n  6、任意角的三角函数的定义:设是任意一个角,P是的终边上的任意一点(异于原点),它与原点的距离是,那么,,,,。三角函数值只与角的大小有关,而与终边上点P的位置无关。如(1)已知角的终边经过点P(5,-12),则的值为__。(答:);(2)设是第三、四象限角,,则的取值范围是_______(答:(-1,);(3)若,试判断的符号(答:负)  7.三角函数线的特征是:正弦线MP"站在轴上(起点在轴上)"、余弦线OM"躺在轴上(起点是原点)"、正切线AT"站在点处(起点是)".三角函数线的重要应用是比较三角函数值的大小和解三角不等式。如(1)若,则的大小关系为_____(答:);(2)若为锐角,则的大小关系为_______(答:);(3)函数的定义域是_______(答:)  8.特殊角的三角函数值:  30°45°60°0°90°180°2  (1)平方关系:  (2)倒数关系:sincsc=1,cossec=1,tancot=1,  (3)商数关系:  同角三角函数的基本关系式的主要应用是,已知一个角的三角函数值,求此角的其它三角函数值。在运用平方关系解题时,要根据已知角的范围和三角函数的取值,尽可能地压缩角的范围,以便进行定号;在具体求三角函数值时,一般不需用同角三角函数的基本关系式,而是先根据角的范围确定三角函数值的符号,再利用解直角三角形求出此三角函数值的绝对值。如(1)函数的值的符号为____(答:大于0);(2)若,则使成立的的取值范围是____(答:);(3)已知,,则=____(答:);(4)已知,则=____;=_________(答:;);(5)已知,则等于  A、  B、  C、   D、(答:B);(6)已知,则的值为______(答:-1)。\n  10.三角函数诱导公式()的本质是:奇变偶不变(对而言,指取奇数或偶数),符号看象限(看原函数,同时可把看成是锐角).诱导公式的应用是求任意角的三角函数值,其一般步骤:(1)负角变正角,再写成2k+,;(2)转化为锐角三角函数。如(1)的值为________(答:);(2)已知,则______,若为第二象限角,则________。(答:;)  11、两角和与差的正弦、余弦、正切公式及倍角公式:    如(1)下列各式中,值为的是A、 B、 C、  D、 (答:C);(2)命题P:,命题Q:,则P是Q的 A、充要条件  B、充分不必要条件   C、必要不充分条件 D、既不充分也不必要条件(答:C);(3)已知,那么的值为____(答:);(4)的值是______(答:4);(5)已知,求的值(用a表示)甲求得的结果是,乙求得的结果是,对甲、乙求得的结果的正确性你的判断是______(答:甲、乙都对)  12.三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常"切化弦";第三观察代数式的结构特点。基本的技巧有:  (1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.如,,,,等),如(1)已知,,那么的值是_____(答:);(2)已知,且,,求的值(答:);(3)已知为锐角,,,则与的函数关系为______(答:)  (  (3)公式变形使用(。如(1)已知A、B为锐角,且满足,则=_____(答:);(2)设中,,,则此三角形是____三角形(答:等边)  (4)三角函数次数的降升(降幂公式:,与升幂公式:,)。如(1)若,化简为_____(答:);(2)函数的单调递增区间为___________(答:)  (5)式子结构的转化(对角、函数名、式子结构化同)。如(1)(答:);(2)求证:;(3)化简:(答:)  (6)常值变换主要指"1"的变换(等),如已知,求(答:).\n  (7)正余弦"三兄妹-"的内存联系――"知一求二",如(1)若,则__(答:),特别提醒:这里;(2)若,求的值。(答:);(3)已知,试用表示的值(答:)。  13、辅助角公式中辅助角的确定:(其中角所在的象限由a,b的符号确定,角的值由确定)在求最值、化简时起着重要作用。如(1)若方程有实数解,则的取值范围是___________.(答:[-2,2]);(2)当函数取得最大值时,的值是______(答:);(3)如果是奇函数,则=(答:-2);(4)求值:________(答:32)  14、正弦函数和余弦函数的图象:正弦函数和余弦函数图象的作图方法:五点法:先取横坐标分别为0,的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。  15、正弦函数、余弦函数的性质:  (1)定义域:都是R。  (2)值域:都是,对,当时,取最大值1;当时,取最小值-1;对,当时,取最大值1,当时,取最小值-1。如(1)若函数的最大值为,最小值为,则__,_(答:或);(2)函数()的值域是____(答:[-1,2]);(3)若,则的最大值和最小值分别是____、_____(答:7;-5);(4)函数的最小值是_____,此时=__________(答:2;);(5)己知,求的变化范围(答:);(6)若,求的最大、最小值(答:,)。特别提醒:在解含有正余弦函数的问题时,你深入挖掘正余弦函数的有界性了吗?  (3)周期性:①、的最小正周期都是2;②和的最小正周期都是。如(1)若,则=___(答:0);(2)函数的最小正周期为____(答:);(3)设函数,若对任意都有成立,则的最小值为__

相关文档