- 221.00 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第二节 命题、充分条件与必要条件
[考纲传真] 1.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.
1.命题的概念
可以判断真假、用文字或符号表述的语句叫作命题,其中判断为真的语句叫作真命题,判断为假的语句叫作假命题.
2.四种命题及其相互关系
(1)四种命题之间的关系
图121
(2)四种命题的真假关系
①两个命题互为逆否命题,它们有相同的真假性;
②两个命题互为逆命题或否命题,它们的真假性没有关系.
3.充分条件、必要条件与充要条件的概念
若p⇒q,则p是q的充分条件,q是p的必要条件
p⇒q且qp
p是q的充分不必要条件
pq且q⇒p
p是q的必要不充分条件
p⇔q
p是q的充要条件
pq且qp
p是q的既不充分也不必要条件
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)“x2+2x-3<0”是命题.( )
(2)命题“若p,则q”的否命题是“若p,则﹁q”.( )
(3)当q是p的必要条件时,p是q的充分条件.( )
(4)“若p不成立,则q不成立”等价于“若q成立,则p成立”.( )
[解析] (1)错误.该语句不能判断真假,故该说法是错误的.
(2)错误.否命题既否定条件,又否定结论.
(3)正确.q是p的必要条件说明p⇒q,所以p是q的充分条件.
(4)正确.原命题与逆否命题是等价命题.
[答案] (1)× (2)× (3)√ (4)√
2.(教材改编)命题“若α=,则tan α=1”的逆否命题是( )
A.若α≠,则tan α≠1
B.若α=,则tan α≠1
C.若tan α≠1,则α≠
D.若tan α≠1,则α=
C [“若p,则q”的逆否命题是“若﹁q,则 ﹁p”,显然﹁q:tan α≠1,﹁p:α≠,所以该命题的逆否命题是“若tan α≠1,则α≠”.]
3.已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
A [a=3时,A={1,3},显然A⊆B.
但A⊆B时,a=2或3.
∴“a=3”是“A⊆B”的充分不必要条件.]
4.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中假命题的个数为( )
【导学号:57962007】
A.1 B.2 C.3 D.4
B [原命题正确,从而其逆否命题也正确;其逆命题为“若a>-6,则a>-3”是假命题,从而其否命题也是假命题.因此4个命题中有2个假命题.]
5.(2016·天津高考)设x>0,y∈R,则“x>y”是“x>|y|”的( )
A.充要条件
B.充分而不必要条件
C.必要而不充分条件
D.既不充分也不必要条件
C [当x=1,y=-2时,x>y,但x>|y|不成立;
若x>|y|,因为|y|≥y,所以x>y.
所以x>y是x>|y|的必要而不充分条件.]
四种命题的关系及其真假判断
(1)命题“若x2-3x-4=0,则x=4”的逆否命题及其真假性为( )
A.“若x=4,则x2-3x-4=0”为真命题
B.“若x≠4,则x2-3x-4≠0”为真命题
C.“若x≠4,则x2-3x-4≠0”为假命题
D.“若x=4,则x2-3x-4=0”为假命题
(2)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )
【导学号:57962008】
A.真,假,真 B.假,假,真
C.真,真,假 D.假,假,假
(1)C (2)B [(1)根据逆否命题的定义可以排除A,D,由x2-3x-4=0,得x=4或-1,所以原命题为假命题,所以其逆否命题也是假命题.
(2)由共轭复数的性质,原命题为真命题,因此其逆否命题也为真命题.
当z1=1+2i,z2=2+i时,显然|z1|=|z2|,但z1与z2不共轭,所以逆命题为假命题,从而它的否命题亦为假命题.]
[规律方法] 1.已知原命题写出该命题的其他命题时,先要分清命题的条件与结论.特别注意的是,如果命题不是“若p,则q”形式的命题,需先改写为“若p,则q”的形式.
2.给出一个命题,要判断它是真命题,需经过严格的推理证明;而要说明它是假命题,只需举一反例即可.
3.由于原命题与其逆否命题的真假性相同,所以有时可以利用这种等价性间接地证明命题的真假.
[变式训练1] 原命题为“若<an,n∈N*,则{an}为递减数列”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( )
A.真,真,真 B.假,假,真
C.真,真,假 D.假,假,假
A [由<an,得an+an+1<2an,即an+1<an.
所以当<an时,必有an+1<an,
则{an}是递减数列.
反之,若{an}是递减数列,必有an+1<an,
从而有<an.
所以原命题及其逆命题均为真命题,从而其否命题及其逆否命题也均是真命题.]
充分条件与必要条件的判断
(1)(2014·全国卷Ⅱ)函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则( )
A.p是q的充分必要条件
B.p是q的充分条件,但不是q的必要条件
C.p是q的必要条件,但不是q的充分条件
D.p既不是q的充分条件,也不是q的必要条件
(2)设x∈R,则“|x-2|<1”是“x2+x-2>0”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
(1)C (2)A [(1)当f′(x0)=0时,x=x0不一定是f(x)的极值点,
比如,y=x3在x=0时,f′(0)=0,但在x=0的左右两侧f′(x)的符号相同,因而x=0不是y=x3的极值点.
由极值的定义知,x=x0是f(x)的极值点必有f′(x0)=0.
综上知,p是q的必要条件,但不是充分条件.
(2)|x-2|<1⇔1<x<3,x2+x-2>0⇔x>1或x<-2.
由于{x|1<x<3}是{x|x>1或x<-2}的真子集.
所以“|x-2|<1”是“x2+x-2>0”的充分不必要条件.]
[规律方法] 充分条件、必要条件的三种判断方法
(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.
(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题.
(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.
[变式训练2] (2016·武汉模拟)设集合M={1,2},N={a2},则“a=1”是“N⊆M”的( )
A.必要不充分条件 B.充分不必要条件
C.充要条件 D.既不充分也不必要条件
B [若a=1,则集合N={1},此时满足N⊆M.若N⊆M,则a2=1或2,所以a=±1或a=±.故“a=1”是“N⊆M”的充分不必要条件.]
充分条件、必要条件的应用
已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求m的取值范围.
[解] 由x2-8x-20≤0得
-2≤x≤10,
∴P={x|-2≤x≤10}. 3分
∵x∈P是x∈S的必要条件,
则S⊆P,
∴∴0≤m≤3. 8分
综上,可知0≤m≤3时,x∈P是x∈S的必要条件. 12分
[迁移探究1] 本例条件不变,问是否存在实数m,使x∈P是x∈S的充要条件.
[解] 由例题知P={x|-2≤x≤10}. 2分
若x∈P是x∈S的充要条件,则P=S,
∴ 8分
∴
这样的m不存在. 12分
[迁移探究2] 本例条件不变,若﹁P是﹁S的必要不充分条件,求实数m的取值范围.
[解] 由例题知P={x|-2≤x≤10}.
∵﹁P是﹁S的必要不充分条件,∴P是S的充分不必要条件,
∴P⇒S且SP, 4分
∴[-2,10][1-m,1+m],
∴或 8分
∴m≥9,即m的取值范围是[9,+∞). 12分
[规律方法] 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:
(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.
(2)要注意区间端点值的检验.
[变式训练3] (1)(2017·长沙模拟)已知命题p:a≤x≤a+1,命题q:x2-4x<0,若p是q的充分不必要条件,则a的取值范围是________.
【导学号:57962009】
(2)方程ax2+2x+1=0(a∈R,a为常数)的解集只有一个负实根的充要条件是________.
(1)(0,3) (2)a≤0或a=1 [(1)令M={x|a≤x≤a+1},N={x|x2-4x<0}={x|0